IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v66y2015i3p360-368.html
   My bibliography  Save this article

The offshore wind farm array cable layout problem: a planar open vehicle routing problem

Author

Listed:
  • Joanna Bauer

    (University of Bergen, Bergen, Norway)

  • Jens Lysgaard

    (University of Bergen, Bergen, Norway)

Abstract

In an offshore wind farm (OWF), the turbines are connected to a transformer by cable routes that cannot cross each other. Finding the minimum cost array cable layout thus amounts to a vehicle routing problem with the additional constraints that the routes must be embedded in the plane. For this problem, both exact and heuristic methods are of interest. We optimize cable layouts for real-world OWFs by a hop-indexed integer programming formulation, and develop a heuristic for computing layouts based on the Clarke and Wright savings heuristic for vehicle routing. Our heuristic computes layouts on average only 2% more expensive than the optimal layout. Finally, we present two problem extensions arising from real-world OWF cable layouts, and adapt the integer programming formulation to one of them. The thus obtained optimal layouts are up to 13% cheaper than the actually installed layouts.

Suggested Citation

  • Joanna Bauer & Jens Lysgaard, 2015. "The offshore wind farm array cable layout problem: a planar open vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(3), pages 360-368, March.
  • Handle: RePEc:pal:jorsoc:v:66:y:2015:i:3:p:360-368
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v66/n3/pdf/jors2013188a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v66/n3/full/jors2013188a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martina Fischetti & David Pisinger, 2019. "Mathematical Optimization and Algorithms for Offshore Wind Farm Design: An Overview," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(4), pages 469-485, August.
    2. Jin, Rongsen & Hou, Peng & Yang, Guangya & Qi, Yuanhang & Chen, Cong & Chen, Zhe, 2019. "Cable routing optimization for offshore wind power plants via wind scenarios considering power loss cost model," Applied Energy, Elsevier, vol. 254(C).
    3. Topper, Mathew B.R. & Nava, Vincenzo & Collin, Adam J. & Bould, David & Ferri, Francesco & Olson, Sterling S. & Dallman, Ann R. & Roberts, Jesse D. & Ruiz-Minguela, Pablo & Jeffrey, Henry F., 2019. "Reducing variability in the cost of energy of ocean energy arrays," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 263-279.
    4. Alain Hertz & Odile Marcotte & Asma Mdimagh & Michel Carreau & François Welt, 2017. "Design of a wind farm collection network when several cable types are available," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 62-73, January.
    5. Butterwick, Thomas & Kheiri, Ahmed & Lulli, Guglielmo & Gromicho, Joaquim & Kreeft, Jasper, 2023. "Application of selection hyper-heuristics to the simultaneous optimisation of turbines and cabling within an offshore windfarm," Renewable Energy, Elsevier, vol. 208(C), pages 1-16.
    6. Magnus Daniel Kallinger & José Ignacio Rapha & Pau Trubat Casal & José Luis Domínguez-García, 2023. "Offshore Electrical Grid Layout Optimization for Floating Wind—A Review," Clean Technol., MDPI, vol. 5(3), pages 1-37, June.
    7. Martina Fischetti & Matteo Fischetti, 2023. "Integrated Layout and Cable Routing in Wind Farm Optimal Design," Management Science, INFORMS, vol. 69(4), pages 2147-2164, April.
    8. Aguayo, Maichel M. & Fierro, Pablo E. & De la Fuente, Rodrigo A. & Sepúlveda, Ignacio A. & Figueroa, Dante M., 2021. "A mixed-integer programming methodology to design tidal current farms integrating both cost and benefits: A case study in the Chacao Channel, Chile," Applied Energy, Elsevier, vol. 294(C).
    9. Sarker, Bhaba R. & Faiz, Tasnim Ibn, 2017. "Minimizing transportation and installation costs for turbines in offshore wind farms," Renewable Energy, Elsevier, vol. 101(C), pages 667-679.
    10. Brandão, José, 2020. "A memory-based iterated local search algorithm for the multi-depot open vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 284(2), pages 559-571.
    11. Long Wang & Jianghai Wu & Zeling Tang & Tongguang Wang, 2019. "An Integration Optimization Method for Power Collection Systems of Offshore Wind Farms," Energies, MDPI, vol. 12(20), pages 1-16, October.
    12. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:66:y:2015:i:3:p:360-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.