IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v56y2005i10d10.1057_palgrave.jors.2601944.html
   My bibliography  Save this article

Internet protocol network design with uncertain demand

Author

Listed:
  • M Riis

    (TDC)

  • A J V Skriver

    (TDC)

  • S F Møller

    (TDC)

Abstract

We present a case study concerning the design and dimensioning of the internet protocol network of TDC, the largest Danish network operator. Due to historical reasons the number of points of presence (POPs) in the network has reached a level, believed to be too high. To point out potential POPs for dismantling, we consider a network planning problem concerning dimensioning of the POPs and capacity expansion of the transmission links of the network. This problem is formulated as a two-stage stochastic program using a finite number of scenarios to describe the uncertain outcome of future demand. The problem is then solved by an L-shaped algorithm, and we report results of our computational experiments.

Suggested Citation

  • M Riis & A J V Skriver & S F Møller, 2005. "Internet protocol network design with uncertain demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1184-1195, October.
  • Handle: RePEc:pal:jorsoc:v:56:y:2005:i:10:d:10.1057_palgrave.jors.2601944
    DOI: 10.1057/palgrave.jors.2601944
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601944
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geir Dahl & Mechthild Stoer, 1998. "A Cutting Plane Algorithm for Multicommodity Survivable Network Design Problems," INFORMS Journal on Computing, INFORMS, vol. 10(1), pages 1-11, February.
    2. M Ríos & V Marianov & M Gutierrez, 2000. "Survivable capacitated network design problem: new formulation and Lagrangean relaxation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(5), pages 574-582, May.
    3. C Y Lee & S J Koh, 2001. "Assignment of add–drop multiplexer (ADM) rings and digital cross-connect system (DCS) mesh in telecommunication networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(4), pages 440-448, April.
    4. repec:dgr:rugsom:02a11 is not listed on IDEAS
    5. Albareda-Sambola, Maria & Vlerk, Maarten H. van der & Fernandez, Elena, 2002. "Exact solutions to a class of stochastic generalized assignment problems," Research Report 02A11, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    6. Daniel Bienstock & Oktay Günlük, 1996. "Capacitated Network Design---Polyhedral Structure and Computation," INFORMS Journal on Computing, INFORMS, vol. 8(3), pages 243-259, August.
    7. Morten Riis & Kim Allan Andersen, 2002. "Capacitated Network Design with Uncertain Demand," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 247-260, August.
    8. C S Sung & S H Song, 2003. "Branch-and-price algorithm for a combined problem of virtual path establishment and traffic packet routing in a layered communication network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 72-82, January.
    9. E. Medova, 1998. "Chance-constrained stochastic programming forintegrated services network management," Annals of Operations Research, Springer, vol. 81(0), pages 213-230, June.
    10. Morten Riis & Jørn Lodahl, 2002. "A bicriteria stochastic programming model for capacity expansion in telecommunications," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 56(1), pages 83-100, August.
    11. Werner Römisch & Rüdiger Schultz, 1993. "Stability of Solutions for Stochastic Programs with Complete Recourse," Mathematics of Operations Research, INFORMS, vol. 18(3), pages 590-609, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garg, Manish & Smith, J. Cole, 2008. "Models and algorithms for the design of survivable multicommodity flow networks with general failure scenarios," Omega, Elsevier, vol. 36(6), pages 1057-1071, December.
    2. Ioannis Gamvros & Bruce Golden & S. Raghavan, 2006. "The Multilevel Capacitated Minimum Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 18(3), pages 348-365, August.
    3. Sridhar, Varadharajan & Park, June S., 2000. "Benders-and-cut algorithm for fixed-charge capacitated network design problem," European Journal of Operational Research, Elsevier, vol. 125(3), pages 622-632, September.
    4. S H Melouk & B B Keskin & C Armbrester & M Anderson, 2011. "A simulation optimization-based decision support tool for mitigating traffic congestion," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1971-1982, November.
    5. Morten Riis & Kim Allan Andersen, 2002. "Capacitated Network Design with Uncertain Demand," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 247-260, August.
    6. Terblanche, S.E. & Wessäly, R. & Hattingh, J.M., 2011. "Survivable network design with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 210(1), pages 10-26, April.
    7. Anantaram Balakrishnan & Thomas L. Magnanti & Joel S. Sokol & Yi Wang, 2002. "Spare-Capacity Assignment For Line Restoration Using a Single-Facility Type," Operations Research, INFORMS, vol. 50(4), pages 617-635, August.
    8. Kavinesh J. Singh & Andy B. Philpott & R. Kevin Wood, 2009. "Dantzig-Wolfe Decomposition for Solving Multistage Stochastic Capacity-Planning Problems," Operations Research, INFORMS, vol. 57(5), pages 1271-1286, October.
    9. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    10. C S Sung & S H Song, 2003. "Integrated service network design for a cross-docking supply chain network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1283-1295, December.
    11. René Henrion & Werner Römisch, 2010. "Lipschitz and differentiability properties of quasi-concave and singular normal distribution functions," Annals of Operations Research, Springer, vol. 177(1), pages 115-125, June.
    12. Riis, Morten & Andersen, Kim Allan, 2005. "Applying the minimax criterion in stochastic recourse programs," European Journal of Operational Research, Elsevier, vol. 165(3), pages 569-584, September.
    13. Yogesh Agarwal, 2013. "Design of Survivable Networks Using Three- and Four-Partition Facets," Operations Research, INFORMS, vol. 61(1), pages 199-213, February.
    14. Christina N. Burt & Lou Caccetta, 2014. "Equipment Selection for Surface Mining: A Review," Interfaces, INFORMS, vol. 44(2), pages 143-162, April.
    15. Yogesh K. Agarwal, 2002. "Design of Capacitated Multicommodity Networks with Multiple Facilities," Operations Research, INFORMS, vol. 50(2), pages 333-344, April.
    16. Kenneth Martínez & David Claudio, 2023. "Expanding Fundamental Boundaries between Resilience and Survivability in Systems Engineering: A Literature Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    17. Zhouchun Huang & Qipeng P. Zheng & Andrew L. Liu, 2022. "A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1919-1939, July.
    18. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R, 2017. "On modelling non-linear quantity discounts in a supplier selection problem by mixed linear integer optimization," Annals of Operations Research, Springer, vol. 258(2), pages 301-346, November.
    19. Subhash C. Sarin & Hanif D. Sherali & Seon Ki Kim, 2014. "A branch‐and‐price approach for the stochastic generalized assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(2), pages 131-143, March.
    20. Alminana, Marc & Escudero, Laureano F. & Monge, Juan F. & Sanchez-Soriano, Joaquin, 2007. "On the enrouting protocol problem under uncertainty," European Journal of Operational Research, Elsevier, vol. 181(2), pages 887-902, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:56:y:2005:i:10:d:10.1057_palgrave.jors.2601944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.