IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v34y2023i2p269-277..html

The presence of territorial damselfish predicts choosy client species richness at cleaning stations

Author

Listed:
  • Katie Dunkley
  • Kathryn E Whittey
  • Amy Ellison
  • Sarah E Perkins
  • Jo Cable
  • James E Herbert-Read

Abstract

Mutualisms are driven by partners deciding to interact with one another to gain specific services or rewards. As predicted by biological market theory, partners should be selected based on the likelihood, quality, reward level, and or services each partner can offer. Third-party species that are not directly involved in the interaction, however, may indirectly affect the occurrence and or quality of the services provided, thereby affecting which partners are selected or avoided. We investigated how different clients of the sharknose goby (Elacatinus evelynae) cleaner fish were distributed across cleaning stations, and asked what characteristics, relating to biological market theory, affected this distribution. Through quantifying the visitation and cleaning patterns of client fish that can choose which cleaning station(s) to visit, we found that the relative species richness of visiting clients at stations was negatively associated with the presence of disruptive territorial damselfish at the station. Our study highlights, therefore, the need to consider the indirect effects of third-party species and their interactions (e.g., agonistic interactions) when attempting to understand mutualistic interactions between species. Moreover, we highlight how cooperative interactions may be indirectly governed by external partners.

Suggested Citation

  • Katie Dunkley & Kathryn E Whittey & Amy Ellison & Sarah E Perkins & Jo Cable & James E Herbert-Read, 2023. "The presence of territorial damselfish predicts choosy client species richness at cleaning stations," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(2), pages 269-277.
  • Handle: RePEc:oup:beheco:v:34:y:2023:i:2:p:269-277.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/arac122
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zegni Triki & Sharon Wismer & Olivia Rey & Sandra Ann Binning & Elena Levorato & Redouan Bshary & Ulrika Candolin, 2019. "Biological market effects predict cleaner fish strategic sophistication," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(6), pages 1548-1557.
    2. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    3. Simon Gingins & Redouan Bshary, 2015. "Pairs of cleaner fish prolong interaction duration with client reef fish by increasing service quality," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(2), pages 350-358.
    4. Rohan M. Brooker & Jordan M. Casey & Zara-Louise Cowan & Tiffany L. Sih & Danielle L. Dixson & Andrea Manica & William E. Feeney, 2020. "Domestication via the commensal pathway in a fish-invertebrate mutualism," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Gerko Vink & Stef van Buuren, 2013. "Multiple Imputation of Squared Terms," Sociological Methods & Research, , vol. 42(4), pages 598-607, November.
    3. David Kaplan & Jianshen Chen, 2012. "A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 581-609, July.
    4. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    5. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    6. Lin Lin & Rachel L Spreng & Kelly E Seaton & S Moses Dennison & Lindsay C Dahora & Daniel J Schuster & Sheetal Sawant & Peter B Gilbert & Youyi Fong & Neville Kisalu & Andrew J Pollard & Georgia D Tom, 2024. "GeM-LR: Discovering predictive biomarkers for small datasets in vaccine studies," PLOS Computational Biology, Public Library of Science, vol. 20(11), pages 1-23, November.
    7. Aleix Alcacer & Irene Epifanio & Jorge Valero & Alfredo Ballester, 2021. "Combining Classification and User-Based Collaborative Filtering for Matching Footwear Size," Mathematics, MDPI, vol. 9(7), pages 1-15, April.
    8. Rapp, Hannah & Fredrick, Stephanie & Nickerson, Amanda, 2025. "Cyber victimization reports between parents and children: an examination of agreement predictors," Children and Youth Services Review, Elsevier, vol. 177(C).
    9. Huang Lin & Merete Eggesbø & Shyamal Das Peddada, 2022. "Linear and nonlinear correlation estimators unveil undescribed taxa interactions in microbiome data," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Renate S M Buisman & Katharina Pittner & Marieke S Tollenaar & Jolanda Lindenberg & Lisa J M van den Berg & Laura H C G Compier-de Block & Joost R van Ginkel & Lenneke R A Alink & Marian J Bakermans-K, 2020. "Intergenerational transmission of child maltreatment using a multi-informant multi-generation family design," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    11. Brian Nolan & Juan C. Palomino & Philippe Van Kerm & Salvatore Morelli, 2022. "Intergenerational wealth transfers in Great Britain from the Wealth and Assets Survey in comparative perspective," Fiscal Studies, John Wiley & Sons, vol. 43(2), pages 179-199, June.
    12. Jie Li & Helin Fu & Kaixun Hu & Wei Chen, 2023. "Data Preprocessing and Machine Learning Modeling for Rockburst Assessment," Sustainability, MDPI, vol. 15(18), pages 1-32, September.
    13. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    14. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    15. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    16. Marek Šedivý, 2023. "Mortality shocks and household consumption: the case of Mexico," Review of Economics of the Household, Springer, vol. 21(4), pages 1289-1358, December.
    17. Burnett, J. Wesley & Lacombe, Donald J. & Wallander, Steven, . "Spatial and Temporal Spillovers in US Cropland Values," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 49(01).
    18. Feldkircher, Martin, 2014. "The determinants of vulnerability to the global financial crisis 2008 to 2009: Credit growth and other sources of risk," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 19-49.
    19. repec:plo:pone00:0154450 is not listed on IDEAS
    20. Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.
    21. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:34:y:2023:i:2:p:269-277.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.