IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v32y2021i6p1151-1162..html
   My bibliography  Save this article

Fast food in the city? Nomadic flying-foxes commute less and hang around for longer in urban areas

Author

Listed:
  • Jessica Meade
  • John M Martin
  • Justin A Welbergen

Abstract

Urbanization creates novel ecological spaces where some species thrive. Geographical urbanization promotes human–wildlife conflict; however, we know relatively little about the drivers of biological urbanization, which poses impediments for sound wildlife management and conservation action. Flying-foxes are extremely mobile and move nomadically in response to flowering resources, but are now increasingly found in urban areas, for reasons that are poorly understood. To investigate the mechanisms behind flying-fox urbanization, we examined the movement of 99 satellite tracked grey-headed flying-foxes (Pteropus poliocephalus) over 1 year in urban versus non-urban environments. We found that tracked individuals preferentially visited major-urban roosts, exhibited higher fidelity to major-urban roosts, and foraged over shorter distances when roosting in major-urban areas. In contrast to other colonial species, there were no density-dependent effects of colony size on foraging distance, suggesting that at a landscape scale, flying-foxes distribute themselves across roosts in an ideal-free manner, minimizing competition over urban and non-urban foraging resources. Yet, males consistently foraged over shorter distances than females, suggesting that at a local scale foraging distances reflect competitive inequalities between individuals. Overall, our study supports the hypothesis that flying-fox urbanization is driven by increased spatiotemporal availability of food resources in urban areas; however, unlike in other species, it is likely a consequence of increased urban visitation by nomadic individuals rather than a subset of the population becoming “urban residents” per se. We discuss the implications of the movement behavior we report for the conservation and management of highly mobile species.

Suggested Citation

  • Jessica Meade & John M Martin & Justin A Welbergen, 2021. "Fast food in the city? Nomadic flying-foxes commute less and hang around for longer in urban areas," Behavioral Ecology, International Society for Behavioral Ecology, vol. 32(6), pages 1151-1162.
  • Handle: RePEc:oup:beheco:v:32:y:2021:i:6:p:1151-1162.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/arab078
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brad H McRae & Sonia A Hall & Paul Beier & David M Theobald, 2012. "Where to Restore Ecological Connectivity? Detecting Barriers and Quantifying Restoration Benefits," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-12, December.
    2. S. Lewis & T. N. Sherratt & K. C. Hamer & S. Wanless, 2001. "Evidence of intra-specific competition for food in a pelagic seabird," Nature, Nature, vol. 412(6849), pages 816-819, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Karimloo & Marco Campera & Muhammad Ali Imron & Shrey Rakholia & Abhinav Mehta & Katherine Hedger & K.A.I. Nekaris, 2023. "Habitat Use, Terrestriality and Feeding Behaviour of Javan Slow Lorises in Urban Areas of a Multi-Use Landscape in Indonesia," Land, MDPI, vol. 12(7), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura E Farrell & Daniel M Levy & Therese Donovan & Ruth Mickey & Alan Howard & Jennifer Vashon & Mark Freeman & Kim Royar & C William Kilpatrick, 2018. "Landscape connectivity for bobcat (Lynx rufus) and lynx (Lynx canadensis) in the Northeastern United States," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-25, March.
    2. Robert F. Baldwin & Nakisha T. Fouch, 2018. "Understanding the Biodiversity Contributions of Small Protected Areas Presents Many Challenges," Land, MDPI, vol. 7(4), pages 1-12, October.
    3. Katherine A. Zeller & David W. Wattles & Javan M. Bauder & Stephen DeStefano, 2020. "Forecasting Seasonal Habitat Connectivity in a Developing Landscape," Land, MDPI, vol. 9(7), pages 1-20, July.
    4. Megan K. Jennings & Emily Haeuser & Diane Foote & Rebecca L. Lewison & Erin Conlisk, 2020. "Planning for Dynamic Connectivity: Operationalizing Robust Decision-Making and Prioritization Across Landscapes Experiencing Climate and Land-Use Change," Land, MDPI, vol. 9(10), pages 1-18, September.
    5. Zixuan Li & Jiang Chang & Cheng Li & Sihao Gu, 2023. "Ecological Restoration and Protection of National Land Space in Coal Resource-Based Cities from the Perspective of Ecological Security Pattern: A Case Study in Huaibei City, China," Land, MDPI, vol. 12(2), pages 1-27, February.
    6. Andrius Kučas & Linas Balčiauskas & Carlo Lavalle, 2023. "Identification of Urban and Wildlife Terrestrial Corridor Intersections for Planning of Wildlife-Vehicle Collision Mitigation Measures," Land, MDPI, vol. 12(4), pages 1-18, March.
    7. Zhenfeng Wang & Yan Liu & Xiangqun Xie & Xinke Wang & Hong Lin & Huili Xie & Xingzhao Liu, 2022. "Identifying Key Areas of Green Space for Ecological Restoration Based on Ecological Security Patterns in Fujian Province, China," Land, MDPI, vol. 11(9), pages 1-19, September.
    8. Xiufeng Cao & Zhaoshun Liu & Shujie Li & Zhenjun Gao, 2022. "Integrating the Ecological Security Pattern and the PLUS Model to Assess the Effects of Regional Ecological Restoration: A Case Study of Hefei City, Anhui Province," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    9. Liu Yang & Mengmeng Suo & Shunqian Gao & Hongzan Jiao, 2022. "Construction of an Ecological Network Based on an Integrated Approach and Circuit Theory: A Case Study of Panzhou in Guizhou Province," Sustainability, MDPI, vol. 14(15), pages 1-29, July.
    10. Jiaquan Duan & Yue ‘e Cao & Bo Liu & Yinyin Liang & Jinyu Tu & Jiahui Wang & Yeyang Li, 2023. "Construction of an Ecological Security Pattern in Yangtze River Delta Based on Circuit Theory," Sustainability, MDPI, vol. 15(16), pages 1-16, August.
    11. Dominati, Estelle J. & Mackay, Alec D. & Rendel, John M. & Wall, Andrew & Norton, David A. & Pannell, Jennifer & Devantier, Brian, 2021. "Farm scale assessment of the impacts of biodiversity enhancement on the financial and environmental performance of mixed livestock farms in New Zealand," Agricultural Systems, Elsevier, vol. 187(C).
    12. Boyd, Charlotte & Punt, André E. & Weimerskirch, Henri & Bertrand, Sophie, 2014. "Movement models provide insights into variation in the foraging effort of central place foragers," Ecological Modelling, Elsevier, vol. 286(C), pages 13-25.
    13. Ehsan Rahimi & Pinliang Dong, 2023. "Identifying barriers and pinch-points of large mammal corridors in Iran," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(2), pages 285-297, June.
    14. Andrius Kučas & Linas Balčiauskas, 2021. "Roadkill-Data-Based Identification and Ranking of Mammal Habitats," Land, MDPI, vol. 10(5), pages 1-35, May.
    15. Jun Jiang & Hailin Zhang & Qing Huang & Fei Liu & Long Li & Hongrui Qiu & Shizhe Zhou, 2023. "Diagnosis of Key Ecological Restoration Areas in Territorial Space under the Guidance of Resilience: A Case Study of the Chengdu–Chongqing Region," Land, MDPI, vol. 12(5), pages 1-24, April.
    16. Chunguang Hu & Zhiyong Wang & Gaoliu Huang & Yichen Ding, 2022. "Construction, Evaluation, and Optimization of a Regional Ecological Security Pattern Based on MSPA–Circuit Theory Approach," IJERPH, MDPI, vol. 19(23), pages 1-22, December.
    17. Ford, R. Glenn & Ainley, David G. & Brown, Evelyn D. & Suryan, Robert M. & Irons, David B., 2007. "A spatially explicit optimal foraging model of Black-legged Kittiwake behavior based on prey density, travel distances, and colony size," Ecological Modelling, Elsevier, vol. 204(3), pages 335-348.
    18. Fuqin Yu & Baiping Zhang & Yonghui Yao & Jing Wang & Xinghang Zhang & Junjie Liu & Jiayu Li, 2022. "Identifying Connectivity Conservation Priorities among Protected Areas in Qinling-Daba Mountains, China," Sustainability, MDPI, vol. 14(8), pages 1-14, April.
    19. Koehn, Laura E. & Essington, Timothy E. & Marshall, Kristin N. & Kaplan, Isaac C. & Sydeman, William J. & Szoboszlai, Amber I. & Thayer, Julie A., 2016. "Developing a high taxonomic resolution food web model to assess the functional role of forage fish in the California Current ecosystem," Ecological Modelling, Elsevier, vol. 335(C), pages 87-100.
    20. Langton, R. & Davies, I.M. & Scott, B.E., 2014. "A simulation model coupling the behaviour and energetics of a breeding central place forager to assess the impact of environmental changes," Ecological Modelling, Elsevier, vol. 273(C), pages 31-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:32:y:2021:i:6:p:1151-1162.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.