IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v507y2025ics0304380025001747.html
   My bibliography  Save this article

Integrating functional connectivity and habitat stability into fish habitat assessment and optimizing ecological operation

Author

Listed:
  • Yang, Shiwei
  • Yang, Tao
  • Liang, Ruifeng
  • Wang, Yuanming
  • Li, Kefeng

Abstract

With the development of society and the growing demand for an energy transition, the scale and installed capacity of hydropower have been steadily increasing. However, this has led to a series of ecological and environmental issues, with threats to fish habitats caused by hydrological alterations being particularly significant. Habitat assessment can be used to effectively identify the impacts of hydraulic projects on ecosystems, particularly with respect to ecological flows and ecohydrological characteristics. The current methods of ecological flow determination focus solely on habitat area while overlooking habitat connectivity. Additionally, the identification of ecohydrological characteristics is based entirely on hydrological data, neglecting habitat stability. We selected the large national spawning ground downstream of the Xiangjiaba (XJB) hydropower station and the protected fish species Myxocyprinus asiaticus (M. asiaticus) as research subjects and incorporated functional connectivity and habitat stability into a fish habitat assessment model. Functional connectivity of habitat patches was evaluated using circuit theory, and habitat stability under flow variations was assessed through overlap rate. By simulating the habitat distribution and variations under various flow scenarios, we identified the suitable ecological flow range as 2205–2695 m³/s. The optimal daily flow variation range was determined to be -41.8 to 53.1 m³/s, with the extreme range of -137.3 to 171.8 m³/s. On the basis of these habitat requirements, we proposed an optimized ecological operation scheme. Compared with actual operations, in the minimum ecological deviation scenario, power generation is reduced by only 0.44 %, and the degree of ecological flow deviation is considerably decreased by 43.47 %. Moreover, the optimized scheme yields a stable and suitable flow lasting for one month, which is conducive to promoting the spawning and reproduction of M. asiaticus. The findings and framework presented in this study provide valuable guidance for reservoir management and assessments of watershed ecology.

Suggested Citation

  • Yang, Shiwei & Yang, Tao & Liang, Ruifeng & Wang, Yuanming & Li, Kefeng, 2025. "Integrating functional connectivity and habitat stability into fish habitat assessment and optimizing ecological operation," Ecological Modelling, Elsevier, vol. 507(C).
  • Handle: RePEc:eee:ecomod:v:507:y:2025:i:c:s0304380025001747
    DOI: 10.1016/j.ecolmodel.2025.111189
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025001747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:507:y:2025:i:c:s0304380025001747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.