IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v507y2025ics0304380025001747.html

Integrating functional connectivity and habitat stability into fish habitat assessment and optimizing ecological operation

Author

Listed:
  • Yang, Shiwei
  • Yang, Tao
  • Liang, Ruifeng
  • Wang, Yuanming
  • Li, Kefeng

Abstract

With the development of society and the growing demand for an energy transition, the scale and installed capacity of hydropower have been steadily increasing. However, this has led to a series of ecological and environmental issues, with threats to fish habitats caused by hydrological alterations being particularly significant. Habitat assessment can be used to effectively identify the impacts of hydraulic projects on ecosystems, particularly with respect to ecological flows and ecohydrological characteristics. The current methods of ecological flow determination focus solely on habitat area while overlooking habitat connectivity. Additionally, the identification of ecohydrological characteristics is based entirely on hydrological data, neglecting habitat stability. We selected the large national spawning ground downstream of the Xiangjiaba (XJB) hydropower station and the protected fish species Myxocyprinus asiaticus (M. asiaticus) as research subjects and incorporated functional connectivity and habitat stability into a fish habitat assessment model. Functional connectivity of habitat patches was evaluated using circuit theory, and habitat stability under flow variations was assessed through overlap rate. By simulating the habitat distribution and variations under various flow scenarios, we identified the suitable ecological flow range as 2205–2695 m³/s. The optimal daily flow variation range was determined to be -41.8 to 53.1 m³/s, with the extreme range of -137.3 to 171.8 m³/s. On the basis of these habitat requirements, we proposed an optimized ecological operation scheme. Compared with actual operations, in the minimum ecological deviation scenario, power generation is reduced by only 0.44 %, and the degree of ecological flow deviation is considerably decreased by 43.47 %. Moreover, the optimized scheme yields a stable and suitable flow lasting for one month, which is conducive to promoting the spawning and reproduction of M. asiaticus. The findings and framework presented in this study provide valuable guidance for reservoir management and assessments of watershed ecology.

Suggested Citation

  • Yang, Shiwei & Yang, Tao & Liang, Ruifeng & Wang, Yuanming & Li, Kefeng, 2025. "Integrating functional connectivity and habitat stability into fish habitat assessment and optimizing ecological operation," Ecological Modelling, Elsevier, vol. 507(C).
  • Handle: RePEc:eee:ecomod:v:507:y:2025:i:c:s0304380025001747
    DOI: 10.1016/j.ecolmodel.2025.111189
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025001747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Brad H McRae & Sonia A Hall & Paul Beier & David M Theobald, 2012. "Where to Restore Ecological Connectivity? Detecting Barriers and Quantifying Restoration Benefits," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-12, December.
    2. Ma, Jun & Liu, Defu & Wells, Scott A. & Tang, Hongwu & Ji, Daobin & Yang, Zhengjian, 2015. "Modeling density currents in a typical tributary of the Three Gorges Reservoir, China," Ecological Modelling, Elsevier, vol. 296(C), pages 113-125.
    3. Yao, Weiwei, 2021. "Ecohydraulic tools for aquatic fauna habitat and population status assessment, analysis and monitoring aimed at promoting integrated river management," Ecological Modelling, Elsevier, vol. 456(C).
    4. Yi, Yujun & Cheng, Xi & Yang, Zhifeng & Wieprecht, Silke & Zhang, Shanghong & Wu, Yingjie, 2017. "Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 748-762.
    5. Sen, Souvik & Ganguly, Sourav, 2017. "Opportunities, barriers and issues with renewable energy development – A discussion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1170-1181.
    6. Drielsma, Michael J. & Love, Jamie & Taylor, Subhashni & Thapa, Rajesh & Williams, Kristen J., 2022. "General Landscape Connectivity Model (GLCM): a new way to map whole of landscape biodiversity functional connectivity for operational planning and reporting," Ecological Modelling, Elsevier, vol. 465(C).
    7. Qiu, Jun & Wei, Jia-Hua & Jiang, Hao & Li, Fang-Fang, 2019. "Ecohydrological evaluation for Fish spawning based on fluctuation identification algorithm (FIA)," Ecological Modelling, Elsevier, vol. 402(C), pages 35-44.
    8. Li, Weiming & Chen, Qiuwen & Cai, Desuo & Li, Ruonan, 2015. "Determination of an appropriate ecological hydrograph for a rare fish species using an improved fish habitat suitability model introducing landscape ecology index," Ecological Modelling, Elsevier, vol. 311(C), pages 31-38.
    9. Zeng, Ming & Li, Chen & Zhou, Lisha, 2013. "Progress and prospective on the police system of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 36-44.
    10. Jõks, Madli & Helm, Aveliina & Kasari-Toussaint, Liis & Kook, Ene & Lutter, Reimo & Noreika, Norbertas & Oja, Ede & Öpik, Maarja & Randlane, Tiina & Reier, Ülle & Riibak, Kersti & Saag, Andres & Tullu, 2023. "A simulation model of functional habitat connectivity demonstrates the importance of species establishment in older forests," Ecological Modelling, Elsevier, vol. 481(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Shiwei & Zhang, Zhongwei & Ji, Qianfeng & Liang, Ruifeng & Li, Kefeng, 2023. "Study on the water temperature distribution characteristics of a mixed pumped storage power station reservoir: A case study of Jinshuitan Reservoir," Renewable Energy, Elsevier, vol. 202(C), pages 1012-1020.
    2. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Chunxi Liu & Jijian Lian & Haijun Wang, 2022. "Experimental Analysis of Temperature-Control Curtain Regulating Outflow Temperature in a Thermal-Stratified Reservoir," IJERPH, MDPI, vol. 19(15), pages 1-18, August.
    4. Chang, Jianxia & Li, Yunyun & Yuan, Meng & Wang, Yimin, 2017. "Efficiency evaluation of hydropower station operation: A case study of Longyangxia station in the Yellow River, China," Energy, Elsevier, vol. 135(C), pages 23-31.
    5. Teng, Minmin & Lv, Kunfeng & Han, Chuanfeng & Liu, Pihui, 2025. "A tripartite stochastic evolutionary game for trading strategies under renewable portfolio standards in China’s electric power industry," Renewable Energy, Elsevier, vol. 240(C).
    6. Hao, Junhong & Feng, Xiaolong & Chen, Xiangru & Jin, Xilin & Wang, Xingce & Hao, Tong & Hong, Feng & Du, Xiaoze, 2024. "Optimal scheduling of active distribution network considering symmetric heat and power source-load spatial-temporal characteristics," Applied Energy, Elsevier, vol. 373(C).
    7. Laura E Farrell & Daniel M Levy & Therese Donovan & Ruth Mickey & Alan Howard & Jennifer Vashon & Mark Freeman & Kim Royar & C William Kilpatrick, 2018. "Landscape connectivity for bobcat ( Lynx rufus ) and lynx ( Lynx canadensis ) in the Northeastern United States," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-25, March.
    8. Robert F. Baldwin & Nakisha T. Fouch, 2018. "Understanding the Biodiversity Contributions of Small Protected Areas Presents Many Challenges," Land, MDPI, vol. 7(4), pages 1-12, October.
    9. Zheng, Shuhong & Yang, Juan & Yu, Shiwei, 2021. "How renewable energy technological innovation promotes renewable power generation: Evidence from China's provincial panel data," Renewable Energy, Elsevier, vol. 177(C), pages 1394-1407.
    10. Huiru Zhao & Sen Guo & Hongze Li, 2015. "Economic Impact Assessment of Wind Power Integration: A Quasi-Public Goods Property Perspective," Energies, MDPI, vol. 8(8), pages 1-26, August.
    11. Katherine A. Zeller & David W. Wattles & Javan M. Bauder & Stephen DeStefano, 2020. "Forecasting Seasonal Habitat Connectivity in a Developing Landscape," Land, MDPI, vol. 9(7), pages 1-20, July.
    12. Pei, Wei & Chen, Yanning & Sheng, Kun & Deng, Wei & Du, Yan & Qi, Zhiping & Kong, Li, 2015. "Temporal-spatial analysis and improvement measures of Chinese power system for wind power curtailment problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 148-168.
    13. Ming, Zeng & Junjie, Feng & Song, Xue & Zhijie, Wang & Xiaoli, Zhu & Yuejin, Wang, 2013. "Development of China's pumped storage plant and related policy analysis," Energy Policy, Elsevier, vol. 61(C), pages 104-113.
    14. Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2025. "Impact of business cycles on energy poverty: Exploring the significance with sustainable development goals in newly industrialized economies," Applied Energy, Elsevier, vol. 378(PA).
    15. Aleksandra Kuzior & Yevhen Kovalenko & Inna Tiutiunyk & Larysa Hrytsenko, 2025. "Assessment of the Energy Security of EU Countries in Light of the Expansion of Renewable Energy Sources," Energies, MDPI, vol. 18(8), pages 1-24, April.
    16. Megan K. Jennings & Emily Haeuser & Diane Foote & Rebecca L. Lewison & Erin Conlisk, 2020. "Planning for Dynamic Connectivity: Operationalizing Robust Decision-Making and Prioritization Across Landscapes Experiencing Climate and Land-Use Change," Land, MDPI, vol. 9(10), pages 1-18, September.
    17. Mohd Bilal & Ibrahim Alsaidan & Muhannad Alaraj & Fahad M. Almasoudi & Mohammad Rizwan, 2022. "Techno-Economic and Environmental Analysis of Grid-Connected Electric Vehicle Charging Station Using AI-Based Algorithm," Mathematics, MDPI, vol. 10(6), pages 1-40, March.
    18. Hossein Heirani & Naser Bagheri Moghaddam & Sina Labbafi & Seyedali Sina, 2022. "A Business Model for Developing Distributed Photovoltaic Systems in Iran," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    19. Shiwei Yang & Yuanqin Wei & Junguang Chen & Yuanming Wang & Ruifeng Liang & Kefeng Li, 2024. "Multi-Objective Optimization and Coordination of Power Generation, Ecological Needs, and Carbon Emissions in Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 123-136, January.
    20. Muhammad Shahid Mastoi & Hafiz Mudassir Munir & Shenxian Zhuang & Mannan Hassan & Muhammad Usman & Ahmad Alahmadi & Basem Alamri, 2022. "A Comprehensive Analysis of the Power Demand–Supply Situation, Electricity Usage Patterns, and the Recent Development of Renewable Energy in China," Sustainability, MDPI, vol. 14(6), pages 1-34, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:507:y:2025:i:c:s0304380025001747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.