IDEAS home Printed from https://ideas.repec.org/a/oup/ajagec/v75y1993i4p1021-1029..html
   My bibliography  Save this article

An Intraseasonal Dynamic Optimization Model to Allocate Irrigation Water between Crops

Author

Listed:
  • Kelly J. Bryant
  • James W. Mjelde
  • Ronald D. Lacewell

Abstract

A dynamic programming model that allocates irrigations among competing crops, while allowing for stochastic weather patterns and temporary or permanent abandonment of one crop in dry periods, is presented. Fifteen intraseasonal irrigations are allocated between corn and sorghum fields on the southern Texas High Plains. Broad rules of thumb implied by the results suggest irrigating the driest field in any stage unless soil water is close to field capacity on both fields or below wilting point on corn. A crop simulation model is used to reduce the complicated decision rules into simpler strategies with similar net returns.

Suggested Citation

  • Kelly J. Bryant & James W. Mjelde & Ronald D. Lacewell, 1993. "An Intraseasonal Dynamic Optimization Model to Allocate Irrigation Water between Crops," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 1021-1029.
  • Handle: RePEc:oup:ajagec:v:75:y:1993:i:4:p:1021-1029.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.2307/1243989
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peck, Dannele E. & Adams, Richard M., 2010. "Farm-level impacts of prolonged drought: is a multiyear event more than the sum of its parts?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(1), pages 1-18.
    2. Wu, Shiang-Jen & Yang, Han-Yuan & Chang, Che-Hao & Hsu, Chih-Tsung, 2023. "Modeling GA-derived optimization analysis for canal-based irrigation water allocation under variations in runoff-related and irrigation-related factors," Agricultural Water Management, Elsevier, vol. 290(C).
    3. Robert, Marion & Bergez, Jacques-Eric & Thomas, Alban, 2018. "A stochastic dynamic programming approach to analyze adaptation to climate change – Application to groundwater irrigation in India," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1033-1045.
    4. Sperow, Mark, 2004. "An Analysis Of The Economic Impact Of Water Transfers From Agricultural To Urban Uses," 2004 Annual meeting, August 1-4, Denver, CO 20327, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Iglesias, Eva & Garrido, Alberto & Gomez-Ramos, Almudena, 2003. "Evaluation of drought management in irrigated areas," Agricultural Economics, Blackwell, vol. 29(2), pages 211-229, October.
    6. Madende, Primrose & Grové, Bennie, 2019. "Risk efficiency of optimal water allocation within a single- and multi-stage decision-making framework," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 59(1), August.
    7. Lavee, Doron, 2010. "The effect of water supply uncertainty on farmers' choice of crop portfolio," Agricultural Water Management, Elsevier, vol. 97(11), pages 1847-1854, November.
    8. Dannele E. Peck & Richard M. Adams, 2010. "Farm-level impacts of prolonged drought: is a multiyear event more than the sum of its parts?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(1), pages 43-60, January.
    9. Christine Heumesser & Sabine Fuss & Jana Szolgayová & Franziska Strauss & Erwin Schmid, 2012. "Investment in Irrigation Systems under Precipitation Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3113-3137, September.
    10. Ko, Jonghan & Piccinni, Giovanni & Steglich, Evelyn, 2009. "Using EPIC model to manage irrigated cotton and maize," Agricultural Water Management, Elsevier, vol. 96(9), pages 1323-1331, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ajagec:v:75:y:1993:i:4:p:1021-1029.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.