IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v396y1998i6706d10.1038_23932.html
   My bibliography  Save this article

Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity

Author

Listed:
  • Marcel G. A. van der Heijden

    (Botanisches Institut der Universität Basel)

  • John N. Klironomos

    (University of Guelph)

  • Margot Ursic

    (University of Guelph)

  • Peter Moutoglis

    (Premier Tech Riviere-du-Loup)

  • Ruth Streitwolf-Engel

    (Botanisches Institut der Universität Basel)

  • Thomas Boller

    (Botanisches Institut der Universität Basel)

  • Andres Wiemken

    (Botanisches Institut der Universität Basel)

  • Ian R. Sanders

    (Botanisches Institut der Universität Basel)

Abstract

The functioning and stability of terrestrial ecosystems are determined by plant biodiversity and species composition1,2,3,4,5. However, the ecological mechanisms by which plant biodiversity and species composition are regulated and maintained are not well understood. These mechanisms need to be identified to ensure successful management for conservation and restoration of diverse natural ecosystems. Here we show, by using two independent, but complementary, ecological experiments, that below-ground diversity of arbuscular mycorrhizal fungi (AMF) is a major factor contributing to the maintenance of plant biodiversity and to ecosystem functioning. At low AMF diversity, the plant species composition and overall structure of microcosms that simulate European calcareous grassland fluctuate greatly when the AMF taxa that are present are changed. Plant biodiversity, nutrient capture and productivity in macrocosms that simulate North American old-fields increase significantly with increasing AMF-species richness. These results emphasize the need to protect AMF and to consider these fungi in future management practices in order to maintain diverse ecosystems. Our results also show that microbial interactions can drive ecosystem functions such as plant biodiversity, productivity and variability.

Suggested Citation

  • Marcel G. A. van der Heijden & John N. Klironomos & Margot Ursic & Peter Moutoglis & Ruth Streitwolf-Engel & Thomas Boller & Andres Wiemken & Ian R. Sanders, 1998. "Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity," Nature, Nature, vol. 396(6706), pages 69-72, November.
  • Handle: RePEc:nat:nature:v:396:y:1998:i:6706:d:10.1038_23932
    DOI: 10.1038/23932
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/23932
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/23932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoxi Shi & Yongjun Liu & Lin Mao & Shengjing Jiang & Qi Zhang & Gang Cheng & Lizhe An & Guozhen Du & Huyuan Feng, 2014. "Relative Importance of Deterministic and Stochastic Processes in Driving Arbuscular Mycorrhizal Fungal Assemblage during the Spreading of a Toxic Plant," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    2. Laura A Schreeg & W John Kress & David L Erickson & Nathan G Swenson, 2010. "Phylogenetic Analysis of Local-Scale Tree Soil Associations in a Lowland Moist Tropical Forest," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    3. Matthew Chekwube Enebe & Mariana Erasmus, 2023. "Symbiosis—A Perspective on the Effects of Host Traits and Environmental Parameters in Arbuscular Mycorrhizal Fungal Richness, Colonization and Ecological Functions," Agriculture, MDPI, vol. 13(10), pages 1-28, September.
    4. T E Anne Cotton & Alex J Dumbrell & Thorunn Helgason, 2014. "What Goes in Must Come out: Testing for Biases in Molecular Analysis of Arbuscular Mycorrhizal Fungal Communities," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    5. Mengdie Feng & Dengyu Zhang & Binghui He & Ke Liang & Peidong Xi & Yunfei Bi & Yingying Huang & Dongxin Liu & Tianyang Li, 2021. "Characteristics of Soil C, N, and P Stoichiometry as Affected by Land Use and Slope Position in the Three Gorges Reservoir Area, Southwest China," Sustainability, MDPI, vol. 13(17), pages 1-13, September.
    6. Isabel Ceballos & Michael Ruiz & Cristhian Fernández & Ricardo Peña & Alia Rodríguez & Ian R Sanders, 2013. "The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    7. Vítězslav Vlček & Miroslav Pohanka, 2020. "Glomalin - an interesting protein part of the soil organic matter," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 15(2), pages 67-74.
    8. Chuanhong Xu & Wenhua Xiang & Mengmeng Gou & Liang Chen & Pifeng Lei & Xi Fang & Xiangwen Deng & Shuai Ouyang, 2018. "Effects of Forest Restoration on Soil Carbon, Nitrogen, Phosphorus, and Their Stoichiometry in Hunan, Southern China," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    9. Agata Klimkowska & Klara Goldstein & Tomasz Wyszomirski & Łukasz Kozub & Mateusz Wilk & Camiel Aggenbach & Jan P Bakker & Heinrich Belting & Boudewijn Beltman & Volker Blüml & Yzaak De Vries & Beate G, 2019. "Are we restoring functional fens? – The outcomes of restoration projects in fens re-analysed with plant functional traits," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-22, April.
    10. Xi Wei & Wei Song & Ya Shao & Xiangwen Cai, 2022. "Progress of Ecological Restoration Research Based on Bibliometric Analysis," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    11. Gowdy, John & Seidl, Irmi, 2004. "Economic man and selfish genes: the implications of group selection for economic valuation and policy," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 33(3), pages 343-358, July.
    12. Rosalba O. Fors & Emilia Sorci-Uhmann & Erika S. Santos & Patricia Silva-Flores & Maria Manuela Abreu & Wanda Viegas & Amaia Nogales, 2023. "Influence of Soil Type, Land Use, and Rootstock Genotype on Root-Associated Arbuscular Mycorrhizal Fungi Communities and Their Impact on Grapevine Growth and Nutrition," Agriculture, MDPI, vol. 13(11), pages 1-21, November.
    13. Ritu Mawar & B. L. Manjunatha & Sanjeev Kumar, 2021. "Commercialization, Diffusion and Adoption of Bioformulations for Sustainable Disease Management in Indian Arid Agriculture: Prospects and Challenges," Circular Economy and Sustainability,, Springer.
    14. Sakai, Kenshi & Brown, Patrick H. & Rosenstock, Todd S. & Upadhyaya, Shrinivasa K. & Hastings, Alan, 2022. "Spatial phase synchronisation of pistachio alternate bearing: Common-noise-induced synchronisation of coupled chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    15. Veresoglou, Stavros D. & Halley, John M., 2012. "A model that explains diversity patterns of arbuscular mycorrhizas," Ecological Modelling, Elsevier, vol. 231(C), pages 146-152.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:396:y:1998:i:6706:d:10.1038_23932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.