IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v5y2020i10d10.1038_s41560-020-0673-y.html
   My bibliography  Save this article

Benefits and costs of a utility-ownership business model for residential rooftop solar photovoltaics

Author

Listed:
  • Galen Barbose

    (Lawrence Berkeley National Laboratory)

  • Andrew J. Satchwell

    (Lawrence Berkeley National Laboratory)

Abstract

The rapid growth of rooftop solar photovoltaic systems can pose a number of financial challenges for electric utility shareholders and their customers. One potential pathway to resolving these perceived challenges involves allowing utilities to own and operate rooftop solar systems. However, the financial benefits and costs of this business model are not well understood. Here we model the financial performance of a large-scale utility-owned residential rooftop solar programme. Over a 20 yr period, the programme increases shareholder earnings by 2–5% relative to a no-solar scenario, compared to a 2% earnings loss when an equivalent amount of rooftop solar is instead owned by non-utility parties. Such a programme could therefore be attractive from the perspective of utility investors. The impacts on utility customers, however, are more mixed, with average bills of non-solar customers increasing by 1–3% compared to the no-solar scenario, similar to the 2% increase under traditional, non-utility-ownership structures.

Suggested Citation

  • Galen Barbose & Andrew J. Satchwell, 2020. "Benefits and costs of a utility-ownership business model for residential rooftop solar photovoltaics," Nature Energy, Nature, vol. 5(10), pages 750-758, October.
  • Handle: RePEc:nat:natene:v:5:y:2020:i:10:d:10.1038_s41560-020-0673-y
    DOI: 10.1038/s41560-020-0673-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-020-0673-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-020-0673-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marina Bertolini & Gregorio Morosinotto, 2023. "Business Models for Energy Community in the Aggregator Perspective: State of the Art and Research Gaps," Energies, MDPI, vol. 16(11), pages 1-26, June.
    2. Nguyen, Hai-Tra & Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Optimal demand side management scheduling-based bidirectional regulation of energy distribution network for multi-residential demand response with self-produced renewable energy," Applied Energy, Elsevier, vol. 322(C).
    3. Chavid Leewiraphan & Nipon Ketjoy & Prapita Thanarak, 2023. "Business Perspectives of Distributed System Operators for Solar Rooftop-as-a-Service," Energies, MDPI, vol. 17(1), pages 1-15, December.
    4. Sommerfeldt, Nelson & Pearce, Joshua M., 2023. "Can grid-tied solar photovoltaics lead to residential heating electrification? A techno-economic case study in the midwestern U.S," Applied Energy, Elsevier, vol. 336(C).
    5. Yin, Hui & Zhou, Kaile, 2022. "Performance evaluation of China's photovoltaic poverty alleviation project using machine learning and satellite images," Utilities Policy, Elsevier, vol. 76(C).
    6. Bergaentzle, Claire & Gunkel, Philipp Andreas, 2022. "Cross-sector flexibility, storage investment and the integration of renewables: Capturing the impacts of grid tariffs," Energy Policy, Elsevier, vol. 164(C).
    7. Lu-Miao Li, Peng Zhou, and Wen Wen, 2023. "Distributed Renewable Energy Investment: The Effect of Time-of-Use Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    8. Dutt, Dwarkeshwar & Ranjan, Abhishek, 2022. "Towards a just energy transition in Delhi: Addressing the bias in the rooftop solar market," Energy Policy, Elsevier, vol. 160(C).
    9. Jiehui Yuan & Wenli Yuan & Juan Yuan & Zhihong Liu & Jia Liao & Xunmin Ou, 2023. "Policy Recommendations for Distributed Solar PV Aiming for a Carbon-Neutral Future," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    10. Yang, Peiwen & Fang, Debin & Wang, Shuyi, 2022. "Optimal trading mechanism for prosumer-centric local energy markets considering deviation assessment," Applied Energy, Elsevier, vol. 325(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:5:y:2020:i:10:d:10.1038_s41560-020-0673-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.