IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v5y2020i10d10.1038_s41560-020-00680-x.html
   My bibliography  Save this article

Ambient-pressure and low-temperature upgrading of lignin bio-oil to hydrocarbons using a hydrogen buffer catalytic system

Author

Listed:
  • Wei Liu

    (Georgia Institute of Technology)

  • Wenqin You

    (Georgia Institute of Technology)

  • Wei Sun

    (Georgia Institute of Technology)

  • Weisheng Yang

    (Georgia Institute of Technology)

  • Akshay Korde

    (Georgia Institute of Technology)

  • Yutao Gong

    (Georgia Institute of Technology)

  • Yulin Deng

    (Georgia Institute of Technology)

Abstract

Catalytic hydrodeoxygenation is an essential step for bio-oil upgrading. However, hydrodeoxygenation usually requires a high hydrogen pressure and high temperature due to the good stability of the C–O bonds. Here we report an effective multiphase hydrodeoxygenation of lignin-based bio-oil at temperatures

Suggested Citation

  • Wei Liu & Wenqin You & Wei Sun & Weisheng Yang & Akshay Korde & Yutao Gong & Yulin Deng, 2020. "Ambient-pressure and low-temperature upgrading of lignin bio-oil to hydrocarbons using a hydrogen buffer catalytic system," Nature Energy, Nature, vol. 5(10), pages 759-767, October.
  • Handle: RePEc:nat:natene:v:5:y:2020:i:10:d:10.1038_s41560-020-00680-x
    DOI: 10.1038/s41560-020-00680-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-020-00680-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-020-00680-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Bo & Zhang, Yongjian & Feng, Junfeng & Huang, Cong & Ma, Tianyi & Pan, Hui, 2021. "Highly efficient g-C3N4 supported ruthenium catalysts for the catalytic transfer hydrogenation of levulinic acid to liquid fuel γ-valerolactone," Renewable Energy, Elsevier, vol. 177(C), pages 652-662.
    2. Tao Peng & Wenbin Zhang & Baiyao Liang & Guanwu Lian & Yun Zhang & Wei Zhao, 2023. "Electrocatalytic valorization of lignocellulose-derived aromatics at industrial-scale current densities," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Cao, Yang & He, Mingjing & Dutta, Shanta & Luo, Gang & Zhang, Shicheng & Tsang, Daniel C.W., 2021. "Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:5:y:2020:i:10:d:10.1038_s41560-020-00680-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.