IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v1y2016i4d10.1038_nenergy.2016.18.html
   My bibliography  Save this article

Tracking-integrated systems for concentrating photovoltaics

Author

Listed:
  • Harry Apostoleris

    (Laboratory for Energy and Nanoscience, Masdar Institute of Science and Technology)

  • Marco Stefancich

    (Institute of Materials for Electronics and Magnetism, National Research Council)

  • Matteo Chiesa

    (Laboratory for Energy and Nanoscience, Masdar Institute of Science and Technology)

Abstract

Concentrating photovoltaic (CPV) systems, which use optical elements to focus light onto small-area solar cells, have the potential to minimize the costs, while improving efficiency, of photovoltaic technology. However, CPV is limited by the need to track the apparent motion of the Sun. This is typically accomplished using high-precision mechanical trackers that rotate the entire module to maintain normal light incidence. These machines are large, heavy and expensive to build and maintain, deterring commercial interest and excluding CPV from the residential market. To avoid this issue, some attention has recently been devoted to the development of tracking-integrated systems, in which tracking is performed inside the CPV module itself. This creates a compact system geometry that could be less expensive and more suitable for rooftop installation than existing CPV trackers. We review the basic tracking principles and concepts exploited in these systems, describe and categorize the existing designs, and discuss the potential impact of tracking integration on CPV cost models and commercial potential.

Suggested Citation

  • Harry Apostoleris & Marco Stefancich & Matteo Chiesa, 2016. "Tracking-integrated systems for concentrating photovoltaics," Nature Energy, Nature, vol. 1(4), pages 1-8, April.
  • Handle: RePEc:nat:natene:v:1:y:2016:i:4:d:10.1038_nenergy.2016.18
    DOI: 10.1038/nenergy.2016.18
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nenergy201618
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nenergy.2016.18?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Yizhou & Ma, Benchi & Zeng, Zilong & Lou, Hewei & He, Yi & Jing, Dengwei, 2022. "Solar collector tube as secondary concentrator for significantly enhanced optical performance of LCPV/T system," Renewable Energy, Elsevier, vol. 193(C), pages 418-433.
    2. Harry Apostoleris & Marco Stefancich & Matteo Chiesa, 2021. "The CPV “Toolbox”: New Approaches to Maximizing Solar Resource Utilization with Application-Oriented Concentrator Photovoltaics," Energies, MDPI, vol. 14(4), pages 1-15, February.
    3. Maria A. Ceballos & Pedro J. Pérez-Higueras & Eduardo F. Fernández & Florencia Almonacid, 2023. "Tracking-Integrated CPV Technology: State-of-the-Art and Classification," Energies, MDPI, vol. 16(15), pages 1-15, July.
    4. Li, Qiyuan & Tehrani, S. Saeed Mostafavi & Taylor, Robert A., 2017. "Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage," Energy, Elsevier, vol. 121(C), pages 220-237.
    5. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland, 2018. "Non-tracking East-West XCPC solar thermal collector for 200 celsius applications," Applied Energy, Elsevier, vol. 216(C), pages 521-533.
    6. Sarah El Himer & Salima El Ayane & Sara El Yahyaoui & Jean Paul Salvestrini & Ali Ahaitouf, 2020. "Photovoltaic Concentration: Research and Development," Energies, MDPI, vol. 13(21), pages 1-41, November.
    7. Masakazu Nakatani & Noboru Yamada, 2019. "Characterization of Core-Shell Spherical Lens for Microtracking Concentrator Photovoltaic System," Energies, MDPI, vol. 12(18), pages 1-15, September.
    8. Shoaib Nazir & Asjad Ali & Abdullah Aftab & Hafiz Abdul Muqeet & Sohrab Mirsaeidi & Jian-Min Zhang, 2023. "Techno-Economic and Environmental Perspectives of Solar Cell Technologies: A Comprehensive Review," Energies, MDPI, vol. 16(13), pages 1-31, June.
    9. Momeni, Farhang & Ni, Jun, 2018. "Nature-inspired smart solar concentrators by 4D printing," Renewable Energy, Elsevier, vol. 122(C), pages 35-44.
    10. James Torres Moreno & Carlos Acevedo Penaloza & Milton Coba Salcedo, 2022. "Applied Bibliometric in the Advancement of Solar Energy Research," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 424-429, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:1:y:2016:i:4:d:10.1038_nenergy.2016.18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.