IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3517-d266756.html
   My bibliography  Save this article

Characterization of Core-Shell Spherical Lens for Microtracking Concentrator Photovoltaic System

Author

Listed:
  • Masakazu Nakatani

    (Department of Energy and Environment Science, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka 940-2188, Japan
    Sun Marion Co., Ltd., 1603-1 Kamitomioka-machi, Nagaoka 940-2188, Japan)

  • Noboru Yamada

    (Department of Energy and Environment Science, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka 940-2188, Japan)

Abstract

The optical characteristics of a radially symmetrical core-shell spherical (CSSP) lens is analyzed for its suitability to application in microtracking concentrator photovoltaic systems (MTCPVs). The CSSP lens is compared to a conventional homogenous spherical lens through both ray-tracing simulations and outdoor experiments. Simulation results show that the CSSP lens is superior to the conventional homogenous spherical lens in terms of its optical efficiency for long focal lengths, for which the CSSP lens exhibits less spherical and chromatic aberrations. Outdoor experiments are conducted using test concentrator photovoltaic (CPV) modules with prototype CSSP and homogenous spherical lenses; the trend of the measured short circuit current agrees with the that of the simulated optical efficiency for both lenses. Furthermore, compared to the homogenous lens, the CSSP lens significantly increases module efficiency because of its better illumination uniformity at the solar cell surface. The optical characteristics of the CSSP lens are preferable for MTCPVs with a spherical lens array to achieve a higher module efficiency for a wider incidence angle although further studies on more practical system configurations are needed.

Suggested Citation

  • Masakazu Nakatani & Noboru Yamada, 2019. "Characterization of Core-Shell Spherical Lens for Microtracking Concentrator Photovoltaic System," Energies, MDPI, vol. 12(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3517-:d:266756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jared S. Price & Xing Sheng & Bram M. Meulblok & John A. Rogers & Noel C. Giebink, 2015. "Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    2. Harry Apostoleris & Marco Stefancich & Matteo Chiesa, 2016. "Tracking-integrated systems for concentrating photovoltaics," Nature Energy, Nature, vol. 1(4), pages 1-8, April.
    3. Ngoc Hai Vu & Seoyong Shin, 2018. "Flat Concentrator Photovoltaic System with Lateral Displacement Tracking for Residential Rooftops," Energies, MDPI, vol. 11(1), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harry Apostoleris & Marco Stefancich & Matteo Chiesa, 2021. "The CPV “Toolbox”: New Approaches to Maximizing Solar Resource Utilization with Application-Oriented Concentrator Photovoltaics," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. Ngoc Hai Vu & Seoyong Shin, 2017. "Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting," Energies, MDPI, vol. 10(10), pages 1-13, October.
    3. Sarah El Himer & Salima El Ayane & Sara El Yahyaoui & Jean Paul Salvestrini & Ali Ahaitouf, 2020. "Photovoltaic Concentration: Research and Development," Energies, MDPI, vol. 13(21), pages 1-41, November.
    4. Nithyanandam, K. & Narayan, A. & Pitchumani, R., 2018. "Analysis and design of a radial waveguide concentrator for concentrated solar thermal applications," Energy, Elsevier, vol. 151(C), pages 940-953.
    5. James Torres Moreno & Carlos Acevedo Penaloza & Milton Coba Salcedo, 2022. "Applied Bibliometric in the Advancement of Solar Energy Research," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 424-429, July.
    6. Zhou, Ran & Wang, Ruilin & Xing, Chenjian & Sun, Jian & Guo, Yafei & Li, Weiling & Qu, Wanjun & Hong, Hui & Zhao, Chuanwen, 2022. "Design and analysis of a compact solar concentrator tracking via the refraction of the rotating prism," Energy, Elsevier, vol. 251(C).
    7. Daria Freier & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Roberto Ramirez-Iniguez & Abu Bakar Munir & Siti Hajar Mohd Yasin & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey, 2018. "Annual Prediction Output of an RADTIRC-PV Module," Energies, MDPI, vol. 11(3), pages 1-20, March.
    8. Ngoc Hai Vu & Seoyong Shin, 2018. "Flat Concentrator Photovoltaic System with Lateral Displacement Tracking for Residential Rooftops," Energies, MDPI, vol. 11(1), pages 1-12, January.
    9. Karunesh Kant & Karthik Nithyanandam & Ranga Pitchumani, 2021. "Analysis and Optimization of a Novel Hexagonal Waveguide Concentrator for Solar Thermal Applications," Energies, MDPI, vol. 14(8), pages 1-24, April.
    10. Maria A. Ceballos & Pedro J. Pérez-Higueras & Eduardo F. Fernández & Florencia Almonacid, 2023. "Tracking-Integrated CPV Technology: State-of-the-Art and Classification," Energies, MDPI, vol. 16(15), pages 1-15, July.
    11. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland, 2018. "Non-tracking East-West XCPC solar thermal collector for 200 celsius applications," Applied Energy, Elsevier, vol. 216(C), pages 521-533.
    12. Momeni, Farhang & Ni, Jun, 2018. "Nature-inspired smart solar concentrators by 4D printing," Renewable Energy, Elsevier, vol. 122(C), pages 35-44.
    13. Shoaib Nazir & Asjad Ali & Abdullah Aftab & Hafiz Abdul Muqeet & Sohrab Mirsaeidi & Jian-Min Zhang, 2023. "Techno-Economic and Environmental Perspectives of Solar Cell Technologies: A Comprehensive Review," Energies, MDPI, vol. 16(13), pages 1-31, June.
    14. Diane Palmer & Elena Koumpli & Ian Cole & Ralph Gottschalg & Thomas Betts, 2018. "A GIS-Based Method for Identification of Wide Area Rooftop Suitability for Minimum Size PV Systems Using LiDAR Data and Photogrammetry," Energies, MDPI, vol. 11(12), pages 1-22, December.
    15. Dário Garcia & Dawei Liang & Joana Almeida & Bruno D. Tibúrcio & Hugo Costa & Miguel Catela & Cláudia R. Vistas, 2022. "Elliptical-Shaped Fresnel Lens Design through Gaussian Source Distribution," Energies, MDPI, vol. 15(2), pages 1-21, January.
    16. Zhu, Yizhou & Ma, Benchi & Zeng, Zilong & Lou, Hewei & He, Yi & Jing, Dengwei, 2022. "Solar collector tube as secondary concentrator for significantly enhanced optical performance of LCPV/T system," Renewable Energy, Elsevier, vol. 193(C), pages 418-433.
    17. Li, Qiyuan & Tehrani, S. Saeed Mostafavi & Taylor, Robert A., 2017. "Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage," Energy, Elsevier, vol. 121(C), pages 220-237.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3517-:d:266756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.