IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-02986-7.html
   My bibliography  Save this article

Residential energy use emissions dominate health impacts from exposure to ambient particulate matter in India

Author

Listed:
  • Luke Conibear

    (University of Leeds
    University of Leeds)

  • Edward W. Butt

    (University of Leeds)

  • Christoph Knote

    (Ludwig-Maximilians-University Munich)

  • Stephen R. Arnold

    (University of Leeds)

  • Dominick V. Spracklen

    (University of Leeds)

Abstract

Exposure to ambient fine particulate matter (PM2.5) is a leading contributor to diseases in India. Previous studies analysing emission source attributions were restricted by coarse model resolution and limited PM2.5 observations. We use a regional model informed by new observations to make the first high-resolution study of the sector-specific disease burden from ambient PM2.5 exposure in India. Observed annual mean PM2.5 concentrations exceed 100 μg m−3 and are well simulated by the model. We calculate that the emissions from residential energy use dominate (52%) population-weighted annual mean PM2.5 concentrations, and are attributed to 511,000 (95UI: 340,000–697,000) premature mortalities annually. However, removing residential energy use emissions would avert only 256,000 (95UI: 162,000–340,000), due to the non-linear exposure–response relationship causing health effects to saturate at high PM2.5 concentrations. Consequently, large reductions in emissions will be required to reduce the health burden from ambient PM2.5 exposure in India.

Suggested Citation

  • Luke Conibear & Edward W. Butt & Christoph Knote & Stephen R. Arnold & Dominick V. Spracklen, 2018. "Residential energy use emissions dominate health impacts from exposure to ambient particulate matter in India," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02986-7
    DOI: 10.1038/s41467-018-02986-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-02986-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-02986-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Moretti & Blanca Corona & Viola Rühlin & Thomas Götz & Martin Junginger & Thomas Brunner & Ingwald Obernberger & Li Shen, 2020. "Combining Biomass Gasification and Solid Oxid Fuel Cell for Heat and Power Generation: An Early-Stage Life Cycle Assessment," Energies, MDPI, vol. 13(11), pages 1-24, June.
    2. Carrasco-Garcés, Moisés & Vásquez-Lavín, Felipe & Ponce Oliva, Roberto D. & Diaz Pincheira, Francisco & Barrientos, Manuel, 2021. "Estimating the implicit discount rate for new technology adoption of wood-burning stoves," Energy Policy, Elsevier, vol. 156(C).
    3. Ruoyu Lan & Sebastian D. Eastham & Tianjia Liu & Leslie K. Norford & Steven R. H. Barrett, 2022. "Air quality impacts of crop residue burning in India and mitigation alternatives," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Di Wu & Haotian Zheng & Qing Li & Ling Jin & Rui Lyu & Xiang Ding & Yaoqiang Huo & Bin Zhao & Jingkun Jiang & Jianmin Chen & Xiangdong Li & Shuxiao Wang, 2022. "Toxic potency-adjusted control of air pollution for solid fuel combustion," Nature Energy, Nature, vol. 7(2), pages 194-202, February.
    5. Li, Jing & Wu, Keliu & Chen, Zhangxin & Wang, Wenyang & Yang, Bin & Wang, Kun & Luo, Jia & Yu, Renjie, 2019. "Effects of energetic heterogeneity on gas adsorption and gas storage in geologic shale systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Shujaat Abbas & Muhammad Ibrahim Shah & Avik Sinha & Olohunlana Aminat Olayinka, 2023. "A Gender Differentiated Analysis of Healthy Life Expectancy in South Asia: The Role of Greenhouse Gas Emission," Evaluation Review, , vol. 47(6), pages 1066-1106, December.
    7. Vásquez Lavin, Felipe & Barrientos, Manuel & Castillo, Álvaro & Herrera, Iván & Ponce Oliva, Roberto D., 2020. "Firewood certification programs: Key attributes and policy implications," Energy Policy, Elsevier, vol. 137(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02986-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.