IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10987.html
   My bibliography  Save this article

Effective energy storage from a triboelectric nanogenerator

Author

Listed:
  • Yunlong Zi

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Jie Wang

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Sihong Wang

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Shengming Li

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Zhen Wen

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Hengyu Guo

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Zhong Lin Wang

    (School of Materials Science and Engineering, Georgia Institute of Technology
    Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences)

Abstract

To sustainably power electronics by harvesting mechanical energy using nanogenerators, energy storage is essential to supply a regulated and stable electric output, which is traditionally realized by a direct connection between the two components through a rectifier. However, this may lead to low energy-storage efficiency. Here, we rationally design a charging cycle to maximize energy-storage efficiency by modulating the charge flow in the system, which is demonstrated on a triboelectric nanogenerator by adding a motion-triggered switch. Both theoretical and experimental comparisons show that the designed charging cycle can enhance the charging rate, improve the maximum energy-storage efficiency by up to 50% and promote the saturation voltage by at least a factor of two. This represents a progress to effectively store the energy harvested by nanogenerators with the aim to utilize ambient mechanical energy to drive portable/wearable/implantable electronics.

Suggested Citation

  • Yunlong Zi & Jie Wang & Sihong Wang & Shengming Li & Zhen Wen & Hengyu Guo & Zhong Lin Wang, 2016. "Effective energy storage from a triboelectric nanogenerator," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10987
    DOI: 10.1038/ncomms10987
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10987
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Xia & Ziqing Zhou & Yinghui Shang & Yong Yang & Yunlong Zi, 2023. "Metallic glass-based triboelectric nanogenerators," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Wang, Jiaxin & Jiang, Ziyuan & Sun, Wenpeng & Xu, Xueping & Han, Qinkai & Chu, Fulei, 2022. "Yoyo-ball inspired triboelectric nanogenerators for harvesting biomechanical energy," Applied Energy, Elsevier, vol. 308(C).
    3. Di Liu & Linglin Zhou & Shengnan Cui & Yikui Gao & Shaoxin Li & Zhihao Zhao & Zhiying Yi & Haiyang Zou & Youjun Fan & Jie Wang & Zhong Lin Wang, 2022. "Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Calautit, Katrina & Nasir, Diana S.N.M. & Hughes, Ben Richard, 2021. "Low power energy harvesting systems: State of the art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Zhao, Huai & Ouyang, Huajiang, 2021. "A capsule-structured triboelectric energy harvester with stick-slip vibration and vibro-impact," Energy, Elsevier, vol. 235(C).
    6. Yang, Xin & Lai, Siu-Kai & Wang, Chen & Wang, Jia-Mei & Ding, Hu, 2022. "On a spring-assisted multi-stable hybrid-integrated vibration energy harvester for ultra-low-frequency excitations," Energy, Elsevier, vol. 252(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.