IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64289-y.html
   My bibliography  Save this article

Efficiency optimization for large-scale droplet-based electricity generator arrays with integrated microsupercapacitor arrays

Author

Listed:
  • Zheng Li

    (School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology)

  • Shiqian Chen

    (School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology)

  • Yujie Fu

    (School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology)

  • Jiantong Li

    (School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology)

Abstract

Droplet-based electricity generators are lightweight and nearly metal-free, making them promising for hydraulic power applications. However, two critical challenges hinder their practical application: significant performance degradation, potentially up to 90%, in existing small-scale integrated panels, and low efficiency, often less than 2%, in storing the irregular high-voltage pulsed electricity produced by large-scale arrays. Here, we demonstrate that by tailoring the bottom electrodes so that their area is comparable to the spread area of the impinging water droplets, we double the average output power of individual cells and fabricate large-scale (30-cell) arrays that achieve approximately 2.5 times higher power than state-of-the-art arrays. Furthermore, without using any power management chip, we integrate a large-scale (400-cell) micro-supercapacitor array to store the irregular high-voltage electricity produced by the 30-cell generator array at an efficiency of 21.8%. The integration of large-scale electricity generator arrays and micro-supercapacitor arrays forms a simple, chipless, self-charging power system with an output power of 81.2 μW, which is 27 times higher than current systems based on 30-cell arrays. This work provides important insights towards practical applications of droplet-based electricity generators.

Suggested Citation

  • Zheng Li & Shiqian Chen & Yujie Fu & Jiantong Li, 2025. "Efficiency optimization for large-scale droplet-based electricity generator arrays with integrated microsupercapacitor arrays," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64289-y
    DOI: 10.1038/s41467-025-64289-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64289-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64289-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wanghuai Xu & Huanxi Zheng & Yuan Liu & Xiaofeng Zhou & Chao Zhang & Yuxin Song & Xu Deng & Michael Leung & Zhengbao Yang & Ronald X. Xu & Zhong Lin Wang & Xiao Cheng Zeng & Zuankai Wang, 2020. "A droplet-based electricity generator with high instantaneous power density," Nature, Nature, vol. 578(7795), pages 392-396, February.
    2. Song Ding & Jiangheng Jia & Bo Xu & Zhizhan Dai & Yiwei Wang & Shengchun Shen & Yuewei Yin & Xiaoguang Li, 2025. "Overrated energy storage performances of dielectrics seriously affected by fringing effect and parasitic capacitance," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    3. Yunlong Zi & Jie Wang & Sihong Wang & Shengming Li & Zhen Wen & Hengyu Guo & Zhong Lin Wang, 2016. "Effective energy storage from a triboelectric nanogenerator," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    4. Yong Zhang & Tingting Yang & Kedong Shang & Fengmei Guo & Yuanyuan Shang & Shulong Chang & Licong Cui & Xulei Lu & Zhongbao Jiang & Jian Zhou & Chunqiao Fu & Qi-Chang He, 2022. "Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Wenlin Liu & Zhao Wang & Gao Wang & Qixuan Zeng & Wencong He & Liyu Liu & Xue Wang & Yi Xi & Hengyu Guo & Chenguo Hu & Zhong Lin Wang, 2020. "Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Xiaomeng Liu & Hongyan Gao & Joy E. Ward & Xiaorong Liu & Bing Yin & Tianda Fu & Jianhan Chen & Derek R. Lovley & Jun Yao, 2020. "Power generation from ambient humidity using protein nanowires," Nature, Nature, vol. 578(7796), pages 550-554, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Han & Liu, Guoxu & Bu, Tianzhao & Wang, Zheng & Cao, Jie & Wang, Zhaozheng & Zhang, Zhi & Dong, Sicheng & Zeng, Jianhua & Cao, Xiaoxin & Zhang, Chi, 2024. "Autonomous cantilever buck switch for ultra-efficient power management of triboelectric nanogenerator," Applied Energy, Elsevier, vol. 357(C).
    2. Xin Xia & Ziqing Zhou & Yinghui Shang & Yong Yang & Yunlong Zi, 2023. "Metallic glass-based triboelectric nanogenerators," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Renxuan Yuan & Huizeng Li & Zhipeng Zhao & An Li & Luanluan Xue & Kaixuan Li & Xiao Deng & Xinye Yu & Rujun Li & Quan Liu & Yanlin Song, 2024. "Hermetic hydrovoltaic cell sustained by internal water circulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Zhenguo Gao & Cuiqin Fang & Yuanyuan Gao & Xin Yin & Siyuan Zhang & Jian Lu & Guanglei Wu & Hongjing Wu & Bingang Xu, 2025. "Hybrid electromagnetic and moisture energy harvesting enabled by ionic diode films," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Song Zhang & Mingchao Chi & Jilong Mo & Tao Liu & Yanhua Liu & Qiu Fu & Jinlong Wang & Bin Luo & Ying Qin & Shuangfei Wang & Shuangxi Nie, 2022. "Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yisha Jiang & Wenchao Liu & Tao Wang & Yitian Wu & Tingting Mei & Li Wang & Guoheng Xu & Yude Wang & Nannan Liu & Kai Xiao, 2024. "A nanofluidic chemoelectrical generator with enhanced energy harvesting by ion-electron Coulomb drag," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Peng Duan & Chenxing Wang & Yinpeng Huang & Chunqiao Fu & Xulei Lu & Yong Zhang & Yuming Yao & Lei Chen & Qi-Chang He & Linmao Qian & Tingting Yang, 2025. "Moisture-based green energy harvesting over 600 hours via photocatalysis-enhanced hydrovoltaic effect," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    9. Yikui Gao & Lixia He & Di Liu & Jiayue Zhang & Linglin Zhou & Zhong Lin Wang & Jie Wang, 2024. "Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Su Yang & Lei Zhang & Jianfeng Mao & Jianmiao Guo & Yang Chai & Jianhua Hao & Wei Chen & Xiaoming Tao, 2024. "Green moisture-electric generator based on supramolecular hydrogel with tens of milliamp electricity toward practical applications," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Zhenguo Gao & Yuanyuan Gao & Xinlong Liu & Cuiqin Fang & Juyang Wei & Yaopeng Wu & Shenzhen Deng & Chong Min Koo & Bingang Xu, 2025. "Moist-electromagnetic coupling enabled by ionic-electronic polymer diodes for wireless energy modulation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    12. Di Liu & Linglin Zhou & Shengnan Cui & Yikui Gao & Shaoxin Li & Zhihao Zhao & Zhiying Yi & Haiyang Zou & Youjun Fan & Jie Wang & Zhong Lin Wang, 2022. "Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Xuejiao Lin & Shenming Tao & Jilong Mo & Xijun Wang & Yizhe Shao & Yingfan Hu & Changjing Qiu & Kaiyuan Shen & Chao Dang & Haisong Qi, 2025. "Cellulose hydrogel with in-situ confined nanopores for boosting moist-electric conversion," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    14. Jin Tan & Sunmiao Fang & Zhuhua Zhang & Jun Yin & Luxian Li & Xiang Wang & Wanlin Guo, 2022. "Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Guangtao Zan & Wei Jiang & HoYeon Kim & Kaiying Zhao & Shengyou Li & Kyuho Lee & Jihye Jang & Gwanho Kim & EunAe Shin & Woojoong Kim & Jin Woo Oh & Yeonji Kim & Jong Woong Park & Taebin Kim & Seonju L, 2024. "A core–shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Huiyuan Wu & Chuncai Shan & Shaoke Fu & Kaixian Li & Jian Wang & Shuyan Xu & Gui Li & Qionghua Zhao & Hengyu Guo & Chenguo Hu, 2024. "Efficient energy conversion mechanism and energy storage strategy for triboelectric nanogenerators," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Lingjie Xie & Bohan Lu & Zhengdi Sima & Yina Liu & Haifeng Ji & Zhenqiu Gao & Peng Jiang & Harm Zalinge & Ivona Z. Mitrovic & Xuhui Sun & Zhen Wen, 2025. "Mechanical–electric dual characteristics solid–liquid interfacing sensor for accurate liquid identification," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    18. Zhao, Kun & Song, Zhenhua & Sun, Wanru & Gao, Wei & Guo, Junhong & Zhang, Kewei, 2024. "Flexible neodymium iron boron/polyvinyl chloride (Nd2Fe14B/PVC) composite film based hybrid nanogenerator for efficient mechanical energy harvesting," Energy, Elsevier, vol. 300(C).
    19. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Yunhao Hu & Weifeng Yang & Yuji Ma & Yong Qiu & Wei Wei & Bo Wu & Kerui Li & Yaogang Li & Qinghong Zhang & Ru Xiao & Chengyi Hou & Hongzhi Wang, 2025. "Solid-liquid interface charge transfer for generation of H2O2 and energy," Nature Communications, Nature, vol. 16(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64289-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.