IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-65015-4.html
   My bibliography  Save this article

A rapidly closing window for coral persistence under global warming

Author

Listed:
  • Yves-Marie Bozec

    (University of Queensland)

  • Arne A. S. Adam

    (University of Queensland)

  • Beatriz Arellano-Nava

    (University of Exeter)

  • Anna K. Cresswell

    (Australian Institute of Marine Science
    University of Western Australia)

  • Vanessa Haller-Bull

    (Australian Institute of Marine Science)

  • Takuya Iwanaga

    (Australian Institute of Marine Science)

  • Liam Lachs

    (Newcastle University)

  • Samuel A. Matthews

    (Australian Institute of Marine Science)

  • Jennifer K. McWhorter

    (University of Miami)

  • Kenneth R. N. Anthony

    (Australian Institute of Marine Science
    Gardens Point)

  • Scott A. Condie

    (CSIRO Environment)

  • Paul R. Halloran

    (University of Exeter)

  • Juan-Carlos Ortiz

    (Australian Institute of Marine Science)

  • Cynthia Riginos

    (University of Queensland
    Australian Institute of Marine Science)

  • Peter J. Mumby

    (University of Queensland)

Abstract

Coral reefs around the world are increasingly threatened by marine heatwaves causing widespread coral bleaching and mortality. Global analyses of projected heatwaves can inform decision-making, but forecasting the interactions between disturbance refugia, coral life histories and capacity to adapt is key for guiding strategic management of coral persistence. Here, we simulate coral eco-evolutionary dynamics across 3800 reefs of Australia’s Great Barrier Reef under current climate projections. We project a rapid coral decline by mid-century under all emission scenarios, with further decline under the most likely warming trajectory. However, recovery is possible this century if warming remains below 2 °C, allowing thermal adaptation to keep pace. Our simulations show that resilient reefs are primarily in bleaching refugia, which also support a greater diversity of thermal phenotypes. While cool-adapted corals disperse to warm spots, we found no evidence of ‘gene swamping’ undermining thermal adaptation. Our findings highlight that management opportunities exist to promote adaptation in thermal refugia and warm spots, but emphasize that curbing global warming by 2050 is crucial for coral persistence.

Suggested Citation

  • Yves-Marie Bozec & Arne A. S. Adam & Beatriz Arellano-Nava & Anna K. Cresswell & Vanessa Haller-Bull & Takuya Iwanaga & Liam Lachs & Samuel A. Matthews & Jennifer K. McWhorter & Kenneth R. N. Anthony , 2025. "A rapidly closing window for coral persistence under global warming," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65015-4
    DOI: 10.1038/s41467-025-65015-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-65015-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-65015-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Sully & D. E. Burkepile & M. K. Donovan & G. Hodgson & R. van Woesik, 2019. "A global analysis of coral bleaching over the past two decades," Nature Communications, Nature, vol. 10(1), pages 1-5, December.
    2. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    3. Zeke Hausfather & Kate Marvel & Gavin A. Schmidt & John W. Nielsen-Gammon & Mark Zelinka, 2022. "Climate simulations: recognize the ‘hot model’ problem," Nature, Nature, vol. 605(7908), pages 26-29, May.
    4. Karlo Hock & Christopher Doropoulos & Rebecca Gorton & Scott A. Condie & Peter J. Mumby, 2019. "Split spawning increases robustness of coral larval supply and inter-reef connectivity," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Timothy E. Walsworth & Daniel E. Schindler & Madhavi A. Colton & Michael S. Webster & Stephen R. Palumbi & Peter J. Mumby & Timothy E. Essington & Malin L. Pinsky, 2019. "Management for network diversity speeds evolutionary adaptation to climate change," Nature Climate Change, Nature, vol. 9(8), pages 632-636, August.
    6. Adrian E. Raftery & Alec Zimmer & Dargan M. W. Frierson & Richard Startz & Peiran Liu, 2017. "Less than 2 °C warming by 2100 unlikely," Nature Climate Change, Nature, vol. 7(9), pages 637-641, September.
    7. Malte Meinshausen & Jared Lewis & Christophe McGlade & Johannes Gütschow & Zebedee Nicholls & Rebecca Burdon & Laura Cozzi & Bernd Hackmann, 2022. "Realization of Paris Agreement pledges may limit warming just below 2 °C," Nature, Nature, vol. 604(7905), pages 304-309, April.
    8. Terry P. Hughes & James T. Kerry & Andrew H. Baird & Sean R. Connolly & Andreas Dietzel & C. Mark Eakin & Scott F. Heron & Andrew S. Hoey & Mia O. Hoogenboom & Gang Liu & Michael J. McWilliam & Rachel, 2018. "Global warming transforms coral reef assemblages," Nature, Nature, vol. 556(7702), pages 492-496, April.
    9. Adriana Humanes & Liam Lachs & Elizabeth Beauchamp & Leah Bukurou & Daisy Buzzoni & John Bythell & Jamie R. K. Craggs & Ruben Torre Cerro & Alasdair J. Edwards & Yimnang Golbuu & Helios M. Martinez & , 2024. "Selective breeding enhances coral heat tolerance to marine heatwaves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. E. J. Howells & V. H. Beltran & N. W. Larsen & L. K. Bay & B. L. Willis & M. J. H. van Oppen, 2012. "Coral thermal tolerance shaped by local adaptation of photosymbionts," Nature Climate Change, Nature, vol. 2(2), pages 116-120, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. M. Quigley & M. J. H. Oppen, 2022. "Predictive models for the selection of thermally tolerant corals based on offspring survival," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Kevin Nabor Paredes-Canencio & Ana Lasso & Rosaura Castrillon & Juan R. Vidal-Medina & Enrique C. Quispe, 2024. "Carbon footprint of higher education institutions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(12), pages 30239-30272, December.
    3. Stoeckl, Natalie & Condie, Scott & Anthony, Ken, 2021. "Assessing changes to ecosystem service values at large geographic scale: A case study for Australia’s Great Barrier Reef," Ecosystem Services, Elsevier, vol. 51(C).
    4. Adriana Humanes & Liam Lachs & Elizabeth Beauchamp & Leah Bukurou & Daisy Buzzoni & John Bythell & Jamie R. K. Craggs & Ruben Torre Cerro & Alasdair J. Edwards & Yimnang Golbuu & Helios M. Martinez & , 2024. "Selective breeding enhances coral heat tolerance to marine heatwaves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. F. Javier González-Barrios & Sally A. Keith & Michael J. Emslie & Daniela M. Ceccarelli & Gareth J. Williams & Nicholas A. J. Graham, 2025. "Emergent patterns of reef fish diversity correlate with coral assemblage shifts along the Great Barrier Reef," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Alex S. J. Wyatt & James J. Leichter & Libe Washburn & Li Kui & Peter J. Edmunds & Scott C. Burgess, 2023. "Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Lu, Hongfang & Xi, Dongmin & Cheng, Y. Frank, 2025. "Hydrogen production in integration with CCUS: A realistic strategy towards net zero," Energy, Elsevier, vol. 315(C).
    8. Juan David González-Trujillo & Rosa M. Román-Cuesta & Aarón Israel Muñiz-Castillo & Cibele H. Amaral & Miguel B. Araújo, 2023. "Multiple dimensions of extreme weather events and their impacts on biodiversity," Climatic Change, Springer, vol. 176(11), pages 1-25, November.
    9. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    10. Alexander C. Abajian & Tamma Carleton & Kyle C. Meng & Olivier Deschênes, 2025. "Quantifying the global climate feedback from energy-based adaptation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    11. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    12. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    13. Alt, Marius & Gallier, Carlo & Kesternich, Martin & Sturm, Bodo, 2023. "Collective minimum contributions to counteract the ratchet effect in the voluntary provision of public goods," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    14. Heleen L. Soest & Lara Aleluia Reis & Luiz Bernardo Baptista & Christoph Bertram & Jacques Després & Laurent Drouet & Michel Elzen & Panagiotis Fragkos & Oliver Fricko & Shinichiro Fujimori & Neil Gra, 2022. "Author Correction: Global roll-out of comprehensive policy measures may aid in bridging emissions gap," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    15. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    16. Thananya Janhuaton & Vatanavongs Ratanavaraha & Sajjakaj Jomnonkwao, 2024. "Forecasting Thailand’s Transportation CO 2 Emissions: A Comparison among Artificial Intelligent Models," Forecasting, MDPI, vol. 6(2), pages 1-23, June.
    17. Tu, Chengyi & Fan, Ying & Shi, Tianyu, 2024. "Dimensionality reduction of networked systems with separable coupling-dynamics: Theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    18. Shizhao Zhang & Shuzhi Wang & Jiayong Zhang & Bao Wang & Hui Wang & Liwei Liu & Chong Cao & Muyang Shi & Yuhan Liu, 2025. "Research on the Application of Biochar in Carbon Sequestration: A Bibliometric Analysis," Energies, MDPI, vol. 18(11), pages 1-31, May.
    19. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    20. Carlo Fezzi & Mauro Derek J. Ford & Kirsten L.L. Oleson, 2022. "The economic value of coral reefs: climate change impacts and spatial targeting of restoration measures," DEM Working Papers 2022/5, Department of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65015-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.