IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64897-8.html
   My bibliography  Save this article

Asymmetric tapered multistage solar still with optimized mass transfer equilibrium for ultrahigh water production

Author

Listed:
  • Wen He

    (Xiamen University)

  • Jiacheng Wang

    (Chongqing University)

  • Baiyi Chen

    (Jimei University)

  • Yiyao Li

    (Xiamen University)

  • Zhongyi Fang

    (Xiamen University)

  • Xuan Zhou

    (Xiamen University)

  • Lei Zhou

    (Xiamen University)

  • Meng Li

    (Chongqing University)

  • Xu Hou

    (Xiamen University
    Xiamen University
    Xiamen University)

Abstract

Solar membrane distillation offers a highly promising and sustainable solution to the global freshwater crisis. However, its widespread practical application is currently hampered by a key challenge: Pursuing high water production. This bottleneck stems from a mismatch between the evaporation and condensation capacities in existing systems, where vapor may not be condensed in time due to insufficient condensation capacity, or the available condensation capacity may be underutilized when evaporation is inadequate. Here we show an asymmetric tapered multistage solar still that enables ultrahigh water production by introducing a design principle based on optimizing the mass transfer equilibrium between evaporation and condensation. By systematically optimizing the ratio of condensation-to-evaporation areas through a tunable mass transfer gap, the system achieves a state of ultrahigh-production equilibrium, in which evaporation and condensation processes are maximally coupled. Based on this principle, an optimized eight-stage passive solar still device is built to get a total water production of 4.32 L·m−2·h−1 and total $${\eta }_{c}$$ η c of 81% under 1 kW·m−2 illumination (with 3.1 wt% natural seawater), which ranks among the highest values reported in existing literature. It exhibits stable performance under varying light conditions and salt resistance, producing 34.2 L·d−1 in outdoor tests.

Suggested Citation

  • Wen He & Jiacheng Wang & Baiyi Chen & Yiyao Li & Zhongyi Fang & Xuan Zhou & Lei Zhou & Meng Li & Xu Hou, 2025. "Asymmetric tapered multistage solar still with optimized mass transfer equilibrium for ultrahigh water production," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64897-8
    DOI: 10.1038/s41467-025-64897-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64897-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64897-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Primož Poredoš & Jintong Gao & He Shan & Jie Yu & Zhao Shao & Zhenyuan Xu & Ruzhu Wang, 2024. "Ultra-high freshwater production in multistage solar membrane distillation via waste heat injection to condenser," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Eliodoro Chiavazzo & Matteo Morciano & Francesca Viglino & Matteo Fasano & Pietro Asinari, 2018. "Passive solar high-yield seawater desalination by modular and low-cost distillation," Nature Sustainability, Nature, vol. 1(12), pages 763-772, December.
    3. Mohamed A. Abdelsalam & Muhammad Sajjad & Aikifa Raza & Faisal AlMarzooqi & TieJun Zhang, 2024. "Sustainable biomimetic solar distillation with edge crystallization for passive salt collection and zero brine discharge," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Zhang, Lenan & Xu, Zhenyuan & Bhatia, Bikram & Li, Bangjun & Zhao, Lin & Wang, Evelyn N., 2020. "Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills," Applied Energy, Elsevier, vol. 266(C).
    5. Wenbin Wang & Yusuf Shi & Chenlin Zhang & Seunghyun Hong & Le Shi & Jian Chang & Renyuan Li & Yong Jin & Chisiang Ong & Sifei Zhuo & Peng Wang, 2019. "Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Kaijie Yang & Tingting Pan & Saichao Dang & Qiaoqiang Gan & Yu Han, 2022. "Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Chen, Yushi & Zeng, Hanxuan & Peng, Hao & Luo, Zhouyang & Bao, Hua, 2024. "Synergistic solar electricity-water generation through an integration of semitransparent solar cells and multistage interfacial desalination," Renewable Energy, Elsevier, vol. 237(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lenan Zhang & Xiangyu Li & Yang Zhong & Arny Leroy & Zhenyuan Xu & Lin Zhao & Evelyn N. Wang, 2022. "Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Zhao, Qi & Wei, Yumeng & Yang, Yawei & Qiang, Mengyuan & Fu, Linjing & Ma, Yong & Liu, Bowen & Liu, Yihong & He, Xuedong & Que, Wenxiu, 2025. "Architectural and real-time monitoring design of multi-stage solar still for solar water purification," Renewable Energy, Elsevier, vol. 244(C).
    3. Arunkumar, T. & Wang, Jiaqiang & Denkenberger, D., 2021. "Capillary flow-driven efficient nanomaterials for seawater desalination: Review of classifications, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Zhang, Lenan & Xu, Zhenyuan & Bhatia, Bikram & Li, Bangjun & Zhao, Lin & Wang, Evelyn N., 2020. "Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills," Applied Energy, Elsevier, vol. 266(C).
    5. Primož Poredoš & Jintong Gao & He Shan & Jie Yu & Zhao Shao & Zhenyuan Xu & Ruzhu Wang, 2024. "Ultra-high freshwater production in multistage solar membrane distillation via waste heat injection to condenser," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Morciano, Matteo & Fasano, Matteo & Bergamasco, Luca & Albiero, Alessandro & Lo Curzio, Mario & Asinari, Pietro & Chiavazzo, Eliodoro, 2020. "Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets," Applied Energy, Elsevier, vol. 258(C).
    7. Yajie Hu & Hongyun Ma & Mingmao Wu & Tengyu Lin & Houze Yao & Feng Liu & Huhu Cheng & Liangti Qu, 2022. "A reconfigurable and magnetically responsive assembly for dynamic solar steam generation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Chen, Yushi & Zeng, Hanxuan & Peng, Hao & Luo, Zhouyang & Bao, Hua, 2024. "Synergistic solar electricity-water generation through an integration of semitransparent solar cells and multistage interfacial desalination," Renewable Energy, Elsevier, vol. 237(PC).
    9. Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Huang, Qichen & Liang, Xuechen & Yan, Chongyuan & Liu, Yizhen, 2021. "Review of interface solar-driven steam generation systems: High-efficiency strategies, applications and challenges," Applied Energy, Elsevier, vol. 283(C).
    11. Yiru Pu & Wenzhu Lin & Xiaoxue Yao & Qili Xu & Wai Kin Lo & Yuyi Liu & Jiawei Sun & Yijun Zeng & Songnan Bai & Miaomiao Cui & Stevin Pramana & Tong Li & Zuankai Wang & Steven Wang, 2025. "Large-scale 3D printed fouling-resistant self-floating evaporator," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Baoping Zhang & Pak Wai Wong & Jiaxin Guo & Yongsen Zhou & Yang Wang & Jiawei Sun & Mengnan Jiang & Zuankai Wang & Alicia Kyoungjin An, 2022. "Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Sarvar-Ardeh, Sajjad & Rashidi, Saman & Rafee, Roohollah & Li, Guiqiang, 2024. "Recent advances in the applications of solar-driven co-generation systems for heat, freshwater and power," Renewable Energy, Elsevier, vol. 225(C).
    14. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    15. Bai, Bing-Lin & Du, Shen & Li, Ming-Jia, 2025. "Photovoltaic efficiency improved by self-adaptive water uptake hydrogel evaporative cooling," Applied Energy, Elsevier, vol. 383(C).
    16. Deyu Wang & Xuan Wu & Huimin Yu & Yiming Bu & Yi Lu & Dewei Chu & Gary Owens & Xiaofei Yang & Haolan Xu, 2025. "Dyson sphere-like evaporators enhanced interfacial solar evaporation via self-generated internal convection," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    17. Damian Amiruddin & Devinder Mahajan & Dufei Fang & Wenbin Wang & Peng Wang & Benjamin S. Hsiao, 2023. "A Facile Ultrapure Water Production Method for Electrolysis via Multilayered Photovoltaic/Membrane Distillation," Energies, MDPI, vol. 16(15), pages 1-17, August.
    18. Wei Zhang & Yongzhe Chen & Qinghua Ji & Yuying Fan & Gong Zhang & Xi Lu & Chengzhi Hu & Huijuan Liu & Jiuhui Qu, 2024. "Assessing global drinking water potential from electricity-free solar water evaporation device," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Mohammad Hossein Ahmadi & Mohammad Dehghani Madvar & Milad Sadeghzadeh & Mohammad Hossein Rezaei & Manuel Herrera & Shahaboddin Shamshirband, 2019. "Current Status Investigation and Predicting Carbon Dioxide Emission in Latin American Countries by Connectionist Models," Energies, MDPI, vol. 12(10), pages 1-20, May.
    20. Eliodoro Chiavazzo, 2022. "Critical aspects to enable viable solar-driven evaporative technologies for water treatment," Nature Communications, Nature, vol. 13(1), pages 1-4, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64897-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.