IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64575-9.html
   My bibliography  Save this article

Rattle drum-inspired triboelectric nanogenerator with enhanced output using charge dispatch and magnetic repulsion pendulum

Author

Listed:
  • Wei Tang

    (Guangxi University
    Guangxi University)

  • Hongfang Li

    (Guangxi University
    Guangxi University)

  • Jiawei Li

    (Guangxi University
    Guangxi University)

  • Weiyu Zhou

    (Guangxi University
    Guangxi University)

  • Jiaqi Duan

    (Guangxi University
    Guangxi University)

  • Yongsheng Wen

    (Guangxi University
    Guangxi University)

  • Lingyu Wan

    (Guangxi University
    Guangxi University)

  • Guanlin Liu

    (Guangxi University
    Guangxi University)

Abstract

Densifying triboelectric layers benefits triboelectric nanogenerators (TENGs) by increasing output, improving spatial utilization, and reducing costs. However, structural densification imposes limitations that hinder further output enhancement. A charge dispatch strategy is developed in our proposed rattle drum inspired TENG, which mitigates charge cancellation via path diversion and alleviates electrostatic shielding through mode transformation, yielding over 6x output versus traditional models. Further structural designs to improve layer contact-separation efficiency, including laser etching and contact push pins, raise the triboelectric surface density to 2.76 cm-1. A comprehensive framework is established, encompassing theoretical modeling, engineering optimization, and extensive experimental validation. Furthermore, the generator can capture weak wave energy when equipped with a magnetic repulsion pendulum, boosting motion amplitude and output by 558% and 1662%, respectively, demonstrating scenario adaptability expansion. Here, we show strategies to further elevate layer density and pathways to enhance TENG output.

Suggested Citation

  • Wei Tang & Hongfang Li & Jiawei Li & Weiyu Zhou & Jiaqi Duan & Yongsheng Wen & Lingyu Wan & Guanlin Liu, 2025. "Rattle drum-inspired triboelectric nanogenerator with enhanced output using charge dispatch and magnetic repulsion pendulum," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64575-9
    DOI: 10.1038/s41467-025-64575-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64575-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64575-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang Zou & Puchuan Tan & Bojing Shi & Han Ouyang & Dongjie Jiang & Zhuo Liu & Hu Li & Min Yu & Chan Wang & Xuecheng Qu & Luming Zhao & Yubo Fan & Zhong Lin Wang & Zhou Li, 2019. "A bionic stretchable nanogenerator for underwater sensing and energy harvesting," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Hao Wu & Steven Wang & Zuankai Wang & Yunlong Zi, 2021. "Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG)," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Di Liu & Linglin Zhou & Shengnan Cui & Yikui Gao & Shaoxin Li & Zhihao Zhao & Zhiying Yi & Haiyang Zou & Youjun Fan & Jie Wang & Zhong Lin Wang, 2022. "Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yikui Gao & Lixia He & Di Liu & Jiayue Zhang & Linglin Zhou & Zhong Lin Wang & Jie Wang, 2024. "Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Di Liu & Yikui Gao & Wenyan Qiao & Linglin Zhou & Lixia He & Cuiying Ye & Bingzhe Jin & Baofeng Zhang & Zhong Lin Wang & Jie Wang, 2025. "Field emission effect in triboelectric nanogenerators," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Ali Matin Nazar & King-James Idala Egbe & Azam Abdollahi & Mohammad Amin Hariri-Ardebili, 2021. "Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization," Energies, MDPI, vol. 14(18), pages 1-33, September.
    4. Xiang Li & Roujuan Li & Shaoxin Li & Zhong Lin Wang & Di Wei, 2024. "Triboiontronics with temporal control of electrical double layer formation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Khosroshahi, Zahra & Karimzadeh, Fathallah & Enayati, Mohammad Hossein & Gowda, Hitesh G. Bettaswamy & Wallrabe, Ulrike, 2025. "Humidity resistant triboelectric nanogenerators for wind energy harvesting: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    7. Zhou, Han & Liu, Guoxu & Bu, Tianzhao & Wang, Zheng & Cao, Jie & Wang, Zhaozheng & Zhang, Zhi & Dong, Sicheng & Zeng, Jianhua & Cao, Xiaoxin & Zhang, Chi, 2024. "Autonomous cantilever buck switch for ultra-efficient power management of triboelectric nanogenerator," Applied Energy, Elsevier, vol. 357(C).
    8. Xin Xia & Ziqing Zhou & Yinghui Shang & Yong Yang & Yunlong Zi, 2023. "Metallic glass-based triboelectric nanogenerators," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Wenbo Liu & Youning Duo & Jiaqi Liu & Feiyang Yuan & Lei Li & Luchen Li & Gang Wang & Bohan Chen & Siqi Wang & Hui Yang & Yuchen Liu & Yanru Mo & Yun Wang & Bin Fang & Fuchun Sun & Xilun Ding & Chi Zh, 2022. "Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Donghoon Lee & You-Yeob Song & Angyin Wu & Jia Li & Jeonghun Yun & Dong-Hwa Seo & Seok Woo Lee, 2024. "Electrochemical kinetic energy harvesting mediated by ion solvation switching in two-immiscible liquid electrolyte," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Hao Sun & Yuxuan Xia & Jinyan Zhi & Jun Ma & Jinwan Chen & Zhekai Chu & Weihao Gao & Shuhai Liu & Yong Qin, 2025. "Impedance decoupling strategy to enhance the real-time powering performance of TENG for multi-mode sensing," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    12. Huang, Mingkun & Long, Kaixiang & Luo, Yuecong & Li, Jingxing & Su, Cuicui & Gao, Xiangming & Guo, Shishang, 2024. "Self-charging power module for multidirectional ultra-low frequency mechanical vibration monitoring and energy harvesting," Applied Energy, Elsevier, vol. 361(C).
    13. Hongfa Zhao & Minyi Xu & Mingrui Shu & Jie An & Wenbo Ding & Xiangyu Liu & Siyuan Wang & Cong Zhao & Hongyong Yu & Hao Wang & Chuan Wang & Xianping Fu & Xinxiang Pan & Guangming Xie & Zhong Lin Wang, 2022. "Underwater wireless communication via TENG-generated Maxwell’s displacement current," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Wenxi Huang & Qiongling Ding & Hao Wang & Zixuan Wu & Yibing Luo & Wenxiong Shi & Le Yang & Yujie Liang & Chuan Liu & Jin Wu, 2023. "Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Yijia Lu & Han Tian & Jia Cheng & Fei Zhu & Bin Liu & Shanshan Wei & Linhong Ji & Zhong Lin Wang, 2022. "Decoding lip language using triboelectric sensors with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Sixing Xiong & Kenjiro Fukuda & Kyohei Nakano & Shinyoung Lee & Yutaro Sumi & Masahito Takakuwa & Daishi Inoue & Daisuke Hashizume & Baocai Du & Tomoyuki Yokota & Yinhua Zhou & Keisuke Tajima & Takao , 2024. "Waterproof and ultraflexible organic photovoltaics with improved interface adhesion," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Yawei Wang & Hengxu Du & Hengyi Yang & Ziyue Xi & Cong Zhao & Zian Qian & Xinyuan Chuai & Xuzhang Peng & Hongyong Yu & Yu Zhang & Xin Li & Guobiao Hu & Hao Wang & Minyi Xu, 2024. "A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Zhengyang Kong & Elvis K. Boahen & Dong Jun Kim & Fenglong Li & Joo Sung Kim & Hyukmin Kweon & So Young Kim & Hanbin Choi & Jin Zhu & Wu Ying & Do Hwan Kim, 2024. "Ultrafast underwater self-healing piezo-ionic elastomer via dynamic hydrophobic-hydrolytic domains," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Jingcheng Li & Yasmin Mohamed Yousry & Poh Chong Lim & Seeram Ramakrishna & Kui Yao, 2024. "Mechanism of airborne sound absorption through triboelectric effect for noise mitigation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Fan, Kangqi & Chen, Chenggen & Zhang, Baosen & Li, Xiang & Wang, Zhen & Cheng, Tinghai & Lin Wang, Zhong, 2022. "Robust triboelectric-electromagnetic hybrid nanogenerator with maglev-enabled automatic mode transition for exploiting breeze energy," Applied Energy, Elsevier, vol. 328(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64575-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.