IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40953-z.html
   My bibliography  Save this article

Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection

Author

Listed:
  • Wenxi Huang

    (Sun Yat-sen University)

  • Qiongling Ding

    (Sun Yat-sen University)

  • Hao Wang

    (Sun Yat-sen University)

  • Zixuan Wu

    (Sun Yat-sen University)

  • Yibing Luo

    (Sun Yat-sen University)

  • Wenxiong Shi

    (Tianjin University of Technology)

  • Le Yang

    (Sun Yat-sen University
    Guangdong Province Key Laboratory of Stomatology)

  • Yujie Liang

    (Sun Yat-sen University
    Guangdong Province Key Laboratory of Stomatology)

  • Chuan Liu

    (Sun Yat-sen University)

  • Jin Wu

    (Sun Yat-sen University)

Abstract

Timely and remote biomarker detection is highly desired in personalized medicine and health protection but presents great challenges in the devices reported so far. Here, we present a cost-effective, flexible and self-powered sensing device for H2S biomarker analysis in various application scenarios based on the structure of galvanic cells. The sensing mechanism is attributed to the change in electrode potential resulting from the chemical adsorption of gas molecules on the electrode surfaces. Intrinsically stretchable organohydrogels are used as solid-state electrolytes to enable stable and long-term operation of devices under stretching deformation or in various environments. The resulting open-circuit sensing device exhibits high sensitivity, low detection limit, and excellent selectivity for H2S. Its application in the non-invasive halitosis diagnosis and identification of meat spoilage is demonstrated, emerging great commercial value in portable medical electronics and food security. A wireless sensory system has also been developed for remote H2S monitoring with the participation of Bluetooth and cloud technologies. This work breaks through the shortcomings in the traditional chemiresistive sensors, offering a direction and theoretical foundation for designing wearable sensors catering to other stimulus detection requirements.

Suggested Citation

  • Wenxi Huang & Qiongling Ding & Hao Wang & Zixuan Wu & Yibing Luo & Wenxiong Shi & Le Yang & Yujie Liang & Chuan Liu & Jin Wu, 2023. "Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40953-z
    DOI: 10.1038/s41467-023-40953-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40953-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40953-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang Zou & Puchuan Tan & Bojing Shi & Han Ouyang & Dongjie Jiang & Zhuo Liu & Hu Li & Min Yu & Chan Wang & Xuecheng Qu & Luming Zhao & Yubo Fan & Zhong Lin Wang & Zhou Li, 2019. "A bionic stretchable nanogenerator for underwater sensing and energy harvesting," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Haodong Liu & Chengfeng Du & Liling Liao & Hongjian Zhang & Haiqing Zhou & Weichang Zhou & Tianning Ren & Zhicheng Sun & Yufei Lu & Zhentao Nie & Feng Xu & Jixin Zhu & Wei Huang, 2022. "Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Jiqiang Wang & Baohu Wu & Peng Wei & Shengtong Sun & Peiyi Wu, 2022. "Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Sanwei Hao & Qingjin Fu & Lei Meng & Feng Xu & Jun Yang, 2022. "A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud Wagih & Junjie Shi & Menglong Li & Abiodun Komolafe & Thomas Whittaker & Johannes Schneider & Shanmugam Kumar & William Whittow & Steve Beeby, 2024. "Wide-range soft anisotropic thermistor with a direct wireless radio frequency interface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Ali Matin Nazar & King-James Idala Egbe & Azam Abdollahi & Mohammad Amin Hariri-Ardebili, 2021. "Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization," Energies, MDPI, vol. 14(18), pages 1-33, September.
    3. Wenbo Liu & Youning Duo & Jiaqi Liu & Feiyang Yuan & Lei Li & Luchen Li & Gang Wang & Bohan Chen & Siqi Wang & Hui Yang & Yuchen Liu & Yanru Mo & Yun Wang & Bin Fang & Fuchun Sun & Xilun Ding & Chi Zh, 2022. "Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Hongfa Zhao & Minyi Xu & Mingrui Shu & Jie An & Wenbo Ding & Xiangyu Liu & Siyuan Wang & Cong Zhao & Hongyong Yu & Hao Wang & Chuan Wang & Xianping Fu & Xinxiang Pan & Guangming Xie & Zhong Lin Wang, 2022. "Underwater wireless communication via TENG-generated Maxwell’s displacement current," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Yijia Lu & Han Tian & Jia Cheng & Fei Zhu & Bin Liu & Shanshan Wei & Linhong Ji & Zhong Lin Wang, 2022. "Decoding lip language using triboelectric sensors with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Sixing Xiong & Kenjiro Fukuda & Kyohei Nakano & Shinyoung Lee & Yutaro Sumi & Masahito Takakuwa & Daishi Inoue & Daisuke Hashizume & Baocai Du & Tomoyuki Yokota & Yinhua Zhou & Keisuke Tajima & Takao , 2024. "Waterproof and ultraflexible organic photovoltaics with improved interface adhesion," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Zhengyang Kong & Elvis K. Boahen & Dong Jun Kim & Fenglong Li & Joo Sung Kim & Hyukmin Kweon & So Young Kim & Hanbin Choi & Jin Zhu & Wu Ying & Do Hwan Kim, 2024. "Ultrafast underwater self-healing piezo-ionic elastomer via dynamic hydrophobic-hydrolytic domains," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Ying Liu & Chan Wang & Zhuo Liu & Xuecheng Qu & Yansong Gai & Jiangtao Xue & Shengyu Chao & Jing Huang & Yuxiang Wu & Yusheng Li & Dan Luo & Zhou Li, 2024. "Self-encapsulated ionic fibers based on stress-induced adaptive phase transition for non-contact depth-of-field camouflage sensing," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Xingkai Ju & Jiao Kong & Guohua Qi & Shuping Hou & Xingkang Diao & Shaojun Dong & Yongdong Jin, 2024. "A wearable electrostimulation-augmented ionic-gel photothermal patch doped with MXene for skin tumor treatment," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40953-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.