IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61535-1.html
   My bibliography  Save this article

A tough and robust hydrogel constructed through carbon dots induced crystallization domains integrated orientation regulation

Author

Listed:
  • Huanxin Huo

    (Southwest Forestry University
    Southwest Forestry University)

  • Jingjie Shen

    (Southwest Forestry University
    Southwest Forestry University)

  • Jianyong Wan

    (Southwest Forestry University
    Southwest Forestry University
    Southwest Forestry University)

  • Haoran Shi

    (Southwest Forestry University
    Southwest Forestry University)

  • Hongxing Yang

    (Southwest Forestry University
    Southwest Forestry University)

  • Xin Duan

    (Southwest Forestry University
    Southwest Forestry University)

  • Yihong Gao

    (Southwest Forestry University
    Southwest Forestry University)

  • Yumeng Chen

    (Southwest Forestry University
    Southwest Forestry University)

  • Feng Kuang

    (Southwest Forestry University
    Southwest Forestry University)

  • Hongshan Li

    (Southwest Forestry University
    Southwest Forestry University)

  • Long Yang

    (Southwest Forestry University
    Southwest Forestry University
    Southwest Forestry University)

  • Guanben Du

    (Southwest Forestry University
    Southwest Forestry University
    Southwest Forestry University)

Abstract

Tough hydrogels show great potential applied in flexible electronics, sensors and soft robotics, but it remains challenging to combine high strength, toughness and stability. Here, we report the use of carbon dots (CDs) to induce the formation of crystalline domains, to give materials with favourable properties. The CDs act as nanoscale nucleation-sites within polyvinyl alcohol hydrogels, forming dense crystalline domains that serve as physical crosslinking sites. These domains enable a “pinning effect” that enhances energy dissipation and restricts crack propagation. The resulting hydrogels exhibit strong mechanical performance, including tensile strength up to 156 MPa and toughness of 225 MJ m-3, while also maintaining good swelling resistance. This strategy is generalizable across different types of CDs and polymer systems. In addition, the hydrogels demonstrate stable conductivity under water, making them suitable for applications in underwater motion sensing and flexible supercapacitors. This work provides a scalable approach to engineer robust, multifunctional hydrogels.

Suggested Citation

  • Huanxin Huo & Jingjie Shen & Jianyong Wan & Haoran Shi & Hongxing Yang & Xin Duan & Yihong Gao & Yumeng Chen & Feng Kuang & Hongshan Li & Long Yang & Guanben Du, 2025. "A tough and robust hydrogel constructed through carbon dots induced crystallization domains integrated orientation regulation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61535-1
    DOI: 10.1038/s41467-025-61535-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61535-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61535-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Shengmei Chen & Yiran Ying & Longtao Ma & Daming Zhu & Haitao Huang & Li Song & Chunyi Zhi, 2023. "An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Mutian Hua & Shuwang Wu & Yanfei Ma & Yusen Zhao & Zilin Chen & Imri Frenkel & Joseph Strzalka & Hua Zhou & Xinyuan Zhu & Ximin He, 2021. "Strong tough hydrogels via the synergy of freeze-casting and salting out," Nature, Nature, vol. 590(7847), pages 594-599, February.
    4. Shaoji Wu & Zhao Liu & Caihong Gong & Wanjiang Li & Sijia Xu & Rui Wen & Wen Feng & Zhiming Qiu & Yurong Yan, 2024. "Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Xinhui Li & Shan He & Yanda Jiang & Jian Wang & Yi Yu & Xiaofei Liu & Feng Zhu & Yimei Xie & Youyong Li & Cheng Ma & Zhonghui Shen & Baowen Li & Yang Shen & Xin Zhang & Shujun Zhang & Ce-Wen Nan, 2023. "Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Rasool Nasseri & Negin Bouzari & Junting Huang & Hossein Golzar & Sarah Jankhani & Xiaowu (Shirley) Tang & Tizazu H. Mekonnen & Amirreza Aghakhani & Hamed Shahsavan, 2023. "Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Haodong Liu & Chengfeng Du & Liling Liao & Hongjian Zhang & Haiqing Zhou & Weichang Zhou & Tianning Ren & Zhicheng Sun & Yufei Lu & Zhentao Nie & Feng Xu & Jixin Zhu & Wei Huang, 2022. "Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Yang Li & Yunfeng Li & Elisabeth Prince & Jeffrey I. Weitz & Sergey Panyukov & Arun Ramachandran & Michael Rubinstein & Eugenia Kumacheva, 2022. "Fibrous hydrogels under biaxial confinement," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woojin Choi & Utkarsh Mangal & Jae-Hun Yu & Jeong-Hyun Ryu & Ji‑Yeong Kim & Taesuk Jun & Yoojin Lee & Heesu Cho & Moonhyun Choi & Milae Lee & Du Yeol Ryu & Sang-Young Lee & Se Yong Jung & Jae-Kook Cha, 2024. "Viscoelastic and antimicrobial dental care bioplastic with recyclable life cycle," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Chenggong Xu & Ao Xie & Haiyuan Hu & Zhengde Wang & Yange Feng & Daoai Wang & Weimin Liu, 2025. "Ultrastrong eutectogels engineered via integrated mechanical training in molecular and structural engineering," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    3. Jipeng Zhang & Miaoqian Zhang & Huixiong Wan & Jinping Zhou & Ang Lu, 2025. "Coordinatively stiffen and toughen polymeric gels via the synergy of crystal-domain cross-linking and chelation cross-linking," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    4. Lili Liu & Ding Zhang & Peijia Bai & Yanjie Fang & Jiaqi Guo & Qi Li & Rujun Ma, 2025. "Fatigue-resistant and super-tough thermocells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    5. Xiansheng Zhang & Hongwei Yan & Chongzhi Xu & Xia Dong & Yu Wang & Aiping Fu & Hao Li & Jin Yong Lee & Sheng Zhang & Jiahua Ni & Min Gao & Jing Wang & Jinpeng Yu & Shuzhi Sam Ge & Ming Liang Jin & Lil, 2023. "Skin-like cryogel electronics from suppressed-freezing tuned polymer amorphization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Henri Savolainen & Negar Hosseiniyan & Mario Piedrahita-Bello & Olli Ikkala, 2025. "Bioinspired nondissipative mechanical energy storage and release in hydrogels via hierarchical sequentially swollen stretched chains," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    8. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Siqi He & Weiwen Liang & Youchen Tang & Jinquan Zhang & Runxian Wang & Luna Quan & Yang Ouyang & Rongkang Huang & Ruoxu Dou & Dingcai Wu, 2025. "Robust super-structured porous hydrogel enables bioadaptive repair of dynamic soft tissue," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    10. Kai Wing Kevin Tang & Jinmo Jeong & Ju-Chun Hsieh & Mengmeng Yao & Hong Ding & Wenliang Wang & Xiangping Liu & Ilya Pyatnitskiy & Weilong He & William D. Moscoso-Barrera & Anakaren Romero Lozano & Bri, 2025. "Bioadhesive hydrogel-coupled and miniaturized ultrasound transducer system for long-term, wearable neuromodulation," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    11. Chenxing Wang & Peng Duan & Yinpeng Huang & Xulei Lu & Chunqiao Fu & Yong Zhang & Linmao Qian & Tingting Yang, 2025. "Micro-meso-macroporous channels finely tailored for highly efficient moisture energy harvesting," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    12. Zheyuan Guo & Wenping Li & Hong Wu & Li Cao & Shuqing Song & Xiaohui Ma & Jiafu Shi & Yanxiong Ren & Tong Huang & Yonghong Li & Zhongyi Jiang, 2025. "Reverse filling approach to mixed matrix covalent organic framework membranes for gas separation," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    13. Xiaoqian Mi & Lixue Liu & Shujia Yang & Peiqi Wu & Weiqing Zhan & Xinyi Ji & Jiajie Liang, 2025. "Ink formulation of functional nanowires with hyperbranched stabilizers for versatile printing of flexible electronics," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    14. Weijia Liu & Zhijian Du & Zhongyi Duan & La Li & Guozhen Shen, 2024. "Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Hong Ma & Hongli Chen & Minfeng Chen & Anxin Li & Xiang Han & Dingtao Ma & Peixin Zhang & Jizhang Chen, 2025. "Biomimetic and biodegradable separator with high modulus and large ionic conductivity enables dendrite-free zinc-ion batteries," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    16. Limei Huang & Hao Li & Shunxi Wen & Penghui Xia & Fanzhan Zeng & Chaoyi Peng & Jun Yang & Yun Tan & Ji Liu & Lei Jiang & Jianfeng Wang, 2024. "Control nucleation for strong and tough crystalline hydrogels with high water content," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Hren, Robert & Vujanović, Annamaria & Van Fan, Yee & Klemeš, Jiří Jaromír & Krajnc, Damjan & Čuček, Lidija, 2023. "Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    18. Bin Xue & Zoobia Bashir & Yachong Guo & Wenting Yu & Wenxu Sun & Yiran Li & Yiyang Zhang & Meng Qin & Wei Wang & Yi Cao, 2023. "Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Zilong Xie & Jianan Zhu & Zhengli Dou & Yongzheng Zhang & Ke Wang & Kai Wu & Qiang Fu, 2024. "Liquid metal interface mechanochemistry disentangles energy density and biaxial stretchability tradeoff in composite capacitor film," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Shixun Wang & Shengnan Wang & Zhiquan Wei & Yiqiao Wang & Dechao Zhang & Ze Chen & Chunyi Zhi, 2025. "A parts-per-million scale electrolyte additive for durable aqueous zinc batteries," Nature Communications, Nature, vol. 16(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61535-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.