IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59875-z.html
   My bibliography  Save this article

Unusually long polymers crosslinked by domains of physical bonds

Author

Listed:
  • Xianyang Bao

    (Harvard University)

  • Zheqi Chen

    (Harvard University
    Zhejiang University)

  • Guodong Nian

    (Harvard University)

  • Matthew Wei Ming Tan

    (Harvard University
    50 Nanyang Avenue)

  • Christine Heera Ahn

    (Harvard University)

  • Yakov Kutsovsky

    (Harvard University)

  • Zhigang Suo

    (Harvard University)

Abstract

Polymers crosslinked by covalent bonds suffer from a conflict: dense covalent crosslinks increase modulus but decrease fatigue threshold. Polymers crosslinked by physical bonds commonly have large hysteresis. Here we simultaneously achieve high modulus, high fatigue threshold, and low hysteresis in a network of unusually long polymer chains crosslinked by domains of physical bonds. When the network without precrack is pulled by a moderate stress, chains in the domains slip negligibly, so that the domains function like hard particles, leading to high modulus and low hysteresis. When the network with a precrack is stretched, the chains in the domains at the crack tip slip but do not pull out. This enables high tension to transmit over long segments of chains, leading to a high fatigue threshold.

Suggested Citation

  • Xianyang Bao & Zheqi Chen & Guodong Nian & Matthew Wei Ming Tan & Christine Heera Ahn & Yakov Kutsovsky & Zhigang Suo, 2025. "Unusually long polymers crosslinked by domains of physical bonds," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59875-z
    DOI: 10.1038/s41467-025-59875-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59875-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59875-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59875-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.