IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58956-3.html
   My bibliography  Save this article

Hydrogels with prestressed tensegrity structures

Author

Listed:
  • Bin Xue

    (Nanjing University
    University of Chinese Academy of Sciences)

  • Xu Han

    (Nanjing University)

  • Haoqi Zhu

    (Nanjing University)

  • Qingtai Li

    (Nanjing University)

  • Yu Zhang

    (Nanjing University)

  • Ming Bai

    (Nanjing University)

  • Ying Li

    (Nanjing University of Information Science & Technology)

  • Yiran Li

    (Nanjing University)

  • Meng Qin

    (Nanjing University)

  • Tasuku Nakajima

    (Hokkaido University
    Hokkaido University)

  • Wei Wang

    (Nanjing University
    Nanjing University)

  • Jian Ping Gong

    (Hokkaido University
    Hokkaido University)

  • Yi Cao

    (Nanjing University
    University of Chinese Academy of Sciences
    Nanjing University
    Nanjing University)

Abstract

Tensegrity structures are isolated rigid compression components held in place by a continuous network of tensile components, and are central to natural systems such as the extracellular matrix and the cell cytoskeleton. These structures enable the nonreciprocal mechanical properties essential for dynamic biological functions. Here, we introduce a synthetic approach to engineer hydrogels with tensegrity architectures, drawing inspiration from the mechanochemical principles underlying biological systems. By employing in-situ enzyme-induced amino acid crystal growth within preformed polymeric networks, we achieve a hierarchical integration of micro crystal sticks randomly interlocked in the prestressed polymer matrice. This design mirrors natural tensegrity structures, balancing mechanical forces to maintain high stiffness (tensile moduli up to 30 MPa), fracture toughness (2600 J m⁻²), and water content (exceeding 80%). The resultant hydrogels exhibit bimodulus behavior due to their tensegrity structure, featuring a tensile-to-compressive modulus ratio of 13. This biomimetic approach provides a strategy for creating robust, adaptive materials for applications in tissue engineering and beyond.

Suggested Citation

  • Bin Xue & Xu Han & Haoqi Zhu & Qingtai Li & Yu Zhang & Ming Bai & Ying Li & Yiran Li & Meng Qin & Tasuku Nakajima & Wei Wang & Jian Ping Gong & Yi Cao, 2025. "Hydrogels with prestressed tensegrity structures," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58956-3
    DOI: 10.1038/s41467-025-58956-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58956-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58956-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mutian Hua & Shuwang Wu & Yanfei Ma & Yusen Zhao & Zilin Chen & Imri Frenkel & Joseph Strzalka & Hua Zhou & Xinyuan Zhu & Ximin He, 2021. "Strong tough hydrogels via the synergy of freeze-casting and salting out," Nature, Nature, vol. 590(7847), pages 594-599, February.
    2. Bin Xue & Xu Han & Haoqi Zhu & Qingtai Li & Yu Zhang & Ming Bai & Ying Li & Yiran Li & Meng Qin & Tasuku Nakajima & Wei Wang & Jian Ping Gong & Yi Cao, 2025. "Hydrogels with prestressed tensegrity structures," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    3. Nicolas Rauner & Monika Meuris & Mirjana Zoric & Joerg C. Tiller, 2017. "Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics," Nature, Nature, vol. 543(7645), pages 407-410, March.
    4. Jeong-Yun Sun & Xuanhe Zhao & Widusha R. K. Illeperuma & Ovijit Chaudhuri & Kyu Hwan Oh & David J. Mooney & Joost J. Vlassak & Zhigang Suo, 2012. "Highly stretchable and tough hydrogels," Nature, Nature, vol. 489(7414), pages 133-136, September.
    5. Linglan Fu & Lan Li & Qingyuan Bian & Bin Xue & Jing Jin & Jiayu Li & Yi Cao & Qing Jiang & Hongbin Li, 2023. "Cartilage-like protein hydrogels engineered via entanglement," Nature, Nature, vol. 618(7966), pages 740-747, June.
    6. Daniel A. Fletcher & R. Dyche Mullins, 2010. "Cell mechanics and the cytoskeleton," Nature, Nature, vol. 463(7280), pages 485-492, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Xue & Xu Han & Haoqi Zhu & Qingtai Li & Yu Zhang & Ming Bai & Ying Li & Yiran Li & Meng Qin & Tasuku Nakajima & Wei Wang & Jian Ping Gong & Yi Cao, 2025. "Hydrogels with prestressed tensegrity structures," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yihui Gu & Chao Xu & Yilin Wang & Jing Luo & Dongsheng Shi & Wenjuan Wu & Lu Chen & Yongcan Jin & Bo Jiang & Chaoji Chen, 2025. "Compressible, anti-fatigue, extreme environment adaptable, and biocompatible supramolecular organohydrogel enabled by lignosulfonate triggered noncovalent network," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. Jipeng Zhang & Miaoqian Zhang & Huixiong Wan & Jinping Zhou & Ang Lu, 2025. "Coordinatively stiffen and toughen polymeric gels via the synergy of crystal-domain cross-linking and chelation cross-linking," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Lili Liu & Ding Zhang & Peijia Bai & Yanjie Fang & Jiaqi Guo & Qi Li & Rujun Ma, 2025. "Fatigue-resistant and super-tough thermocells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    4. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Woojin Choi & Utkarsh Mangal & Jae-Hun Yu & Jeong-Hyun Ryu & Ji‑Yeong Kim & Taesuk Jun & Yoojin Lee & Heesu Cho & Moonhyun Choi & Milae Lee & Du Yeol Ryu & Sang-Young Lee & Se Yong Jung & Jae-Kook Cha, 2024. "Viscoelastic and antimicrobial dental care bioplastic with recyclable life cycle," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Bin Xue & Zoobia Bashir & Yachong Guo & Wenting Yu & Wenxu Sun & Yiran Li & Yiyang Zhang & Meng Qin & Wei Wang & Yi Cao, 2023. "Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Matt D. G. Hughes & Sophie Cussons & Benjamin S. Hanson & Kalila R. Cook & Tímea Feller & Najet Mahmoudi & Daniel L. Baker & Robert Ariëns & David A. Head & David J. Brockwell & Lorna Dougan, 2023. "Building block aspect ratio controls assembly, architecture, and mechanics of synthetic and natural protein networks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Chenggong Xu & Ao Xie & Haiyuan Hu & Zhengde Wang & Yange Feng & Daoai Wang & Weimin Liu, 2025. "Ultrastrong eutectogels engineered via integrated mechanical training in molecular and structural engineering," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    10. Jize Liu & Wei Zhao & Zhichao Ma & Hongwei Zhao & Luquan Ren, 2025. "Cartilage-bioinspired tenacious concrete-like hydrogel verified via in-situ testing," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    11. Fenghou Yuan & Huitang Qi & Binghui Song & Yuntian Cui & Junsheng Zhang & Huan Liu & Bo Liu & Hai Lei & Tian Liu, 2025. "Tailorable biosensors for real-time monitoring of stress distribution in soft biomaterials and living tissues," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Hangchao Wang & Yali Yang & Chuan Gao & Tao Chen & Jin Song & Yuxuan Zuo & Qiu Fang & Tonghuan Yang & Wukun Xiao & Kun Zhang & Xuefeng Wang & Dingguo Xia, 2024. "An entanglement association polymer electrolyte for Li-metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Gábor Pete & Ádám Timár & Sigurdur Örn Stefánsson & Ivan Bonamassa & Márton Pósfai, 2024. "Physical networks as network-of-networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Huimin He & Xi Wei & Bin Yang & Hongzhen Liu & Mingze Sun & Yanran Li & Aixin Yan & Chuyang Y. Tang & Yuan Lin & Lizhi Xu, 2022. "Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Bin Xue & Zhengyu Xu & Lan Li & Kaiqiang Guo & Jing Mi & Haipeng Wu & Yiran Li & Chunmei Xie & Jing Jin & Juan Xu & Chunping Jiang & Xiaosong Gu & Meng Qin & Qing Jiang & Yi Cao & Wei Wang, 2025. "Hydrogels with programmed spatiotemporal mechanical cues for stem cell-assisted bone regeneration," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    16. Chao Jiang & Hong-Yu Luo & Xinpeng Xu & Shuo-Xing Dou & Wei Li & Dongshi Guan & Fangfu Ye & Xiaosong Chen & Ming Guo & Peng-Ye Wang & Hui Li, 2023. "Switch of cell migration modes orchestrated by changes of three-dimensional lamellipodium structure and intracellular diffusion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Aruã Clayton Da Silva & Junzhi Wang & Ivan Rusev Minev, 2022. "Electro-assisted printing of soft hydrogels via controlled electrochemical reactions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Xiansheng Zhang & Hongwei Yan & Chongzhi Xu & Xia Dong & Yu Wang & Aiping Fu & Hao Li & Jin Yong Lee & Sheng Zhang & Jiahua Ni & Min Gao & Jing Wang & Jinpeng Yu & Shuzhi Sam Ge & Ming Liang Jin & Lil, 2023. "Skin-like cryogel electronics from suppressed-freezing tuned polymer amorphization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Daniela Sorrentino & Simona Ranallo & Francesco Ricci & Elisa Franco, 2024. "Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Haonan He & Xianchi Zhou & Yuxian Lai & Rouye Wang & Hongye Hao & Xintian Shen & Peng Zhang & Jian Ji, 2025. "Chain entanglement enhanced strong and tough wool keratin/albumin fibers for bioabsorbable and immunocompatible surgical sutures," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58956-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.