IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64307-z.html
   My bibliography  Save this article

Entorhinal grid-like codes for visual space during memory formation

Author

Listed:
  • Luise P. Graichen

    (University of Vienna)

  • Magdalena S. Linder

    (University of Vienna)

  • Lars Keuter

    (University of Vienna
    University Medical Center Hamburg-Eppendorf, Institute of Systems Neuroscience)

  • Ole Jensen

    (University of Oxford)

  • Christian F. Doeller

    (Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences
    Norwegian University of Science and Technology)

  • Claus Lamm

    (University of Vienna)

  • Tobias Staudigl

    (Ludwig-Maximilians-Universität München
    Radboud University)

  • Isabella C. Wagner

    (University of Vienna
    Radboud University
    University of Vienna
    University of Vienna)

Abstract

Eye movements, such as saccades, allow us to gather information about the environment and, in this way, can shape memory. In non-human primates, saccades are associated with the activity of grid cells in the entorhinal cortex. Grid cells are essential for spatial navigation, but whether saccade-based grid-like signals play a role in human memory formation is currently unclear. Here, human participants undergo functional magnetic resonance imaging and continuous eye gaze monitoring while studying scene images. Recognition memory is probed immediately thereafter. Results reveal saccade-based grid-like codes in the left entorhinal cortex that are specific to later remembered trials during study, a finding that we replicate with an independent data set. The grid-related effects are time-locked to activation increases in the frontal eye fields. Unexpectedly, lower saccade-based grid-like codes are associated with better subsequent recognition memory performance. Our findings suggest an entorhinal map of visual space that is timed with neural activity in oculomotor regions, and negatively associated with subsequent memory. Grid-like codes, entorhinal cortex, saccades, frontal eye fields (FEF), memory, functional magnetic resonance imaging (fMRI)

Suggested Citation

  • Luise P. Graichen & Magdalena S. Linder & Lars Keuter & Ole Jensen & Christian F. Doeller & Claus Lamm & Tobias Staudigl & Isabella C. Wagner, 2025. "Entorhinal grid-like codes for visual space during memory formation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64307-z
    DOI: 10.1038/s41467-025-64307-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64307-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64307-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John M. Henderson & Taylor R. Hayes, 2017. "Meaning-based guidance of attention in scenes as revealed by meaning maps," Nature Human Behaviour, Nature, vol. 1(10), pages 743-747, October.
    2. Nathaniel J. Killian & Michael J. Jutras & Elizabeth A. Buffalo, 2012. "A map of visual space in the primate entorhinal cortex," Nature, Nature, vol. 491(7426), pages 761-764, November.
    3. Christian F. Doeller & Caswell Barry & Neil Burgess, 2010. "Evidence for grid cells in a human memory network," Nature, Nature, vol. 463(7281), pages 657-661, February.
    4. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    5. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Matthias Nau & Tobias Navarro Schröder & Markus Frey & Christian F. Doeller, 2020. "Behavior-dependent directional tuning in the human visual-navigation network," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    7. Tobias Staudigl & Elisabeth Hartl & Soheyl Noachtar & Christian F Doeller & Ole Jensen, 2017. "Saccades are phase-locked to alpha oscillations in the occipital and medial temporal lobe during successful memory encoding," PLOS Biology, Public Library of Science, vol. 15(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Federica Sigismondi & Yangwen Xu & Mattia Silvestri & Roberto Bottini, 2024. "Altered grid-like coding in early blind people," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Alexander Nitsch & Mona M. Garvert & Jacob L. S. Bellmund & Nicolas W. Schuck & Christian F. Doeller, 2024. "Grid-like entorhinal representation of an abstract value space during prospective decision making," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Sina Mackay & Thomas P. Reber & Marcel Bausch & Jan Boström & Christian E. Elger & Florian Mormann, 2024. "Concept and location neurons in the human brain provide the ‘what’ and ‘where’ in memory formation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Johnson Ying & Alexandra T. Keinath & Raphael Lavoie & Erika Vigneault & Salah El Mestikawy & Mark P. Brandon, 2022. "Disruption of the grid cell network in a mouse model of early Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Will D Penny & Peter Zeidman & Neil Burgess, 2013. "Forward and Backward Inference in Spatial Cognition," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-22, December.
    7. Irina Barnaveli & Simone Viganò & Daniel Reznik & Patrick Haggard & Christian F. Doeller, 2025. "Hippocampal-entorhinal cognitive maps and cortical motor system represent action plans and their outcomes," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    8. Charlotte S. Herber & Karishma J. B. Pratt & Jeremy M. Shea & Saul A. Villeda & Lisa M. Giocomo, 2025. "Spatial coding dysfunction and network instability in the aging medial entorhinal cortex," Nature Communications, Nature, vol. 16(1), pages 1-27, December.
    9. Sheng-Hao Cao & Xin-Yong Han & Zhi-Ping Zhao & Jian-Wen Gu & Tian-Zi Jiang & Shan Yu, 2025. "Hand position fields of neurons in the premotor cortex of macaques during natural reaching," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    10. Benjamin Dunn & Maria Mørreaunet & Yasser Roudi, 2015. "Correlations and Functional Connections in a Population of Grid Cells," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-21, February.
    11. Simone Viganò & Rena Bayramova & Christian F. Doeller & Roberto Bottini, 2023. "Mental search of concepts is supported by egocentric vector representations and restructured grid maps," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Erik Hermansen & David A. Klindt & Benjamin A. Dunn, 2024. "Uncovering 2-D toroidal representations in grid cell ensemble activity during 1-D behavior," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    14. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Noga Mosheiff & Haggai Agmon & Avraham Moriel & Yoram Burak, 2017. "An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-19, June.
    16. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    17. Louis-Emmanuel Martinet & Denis Sheynikhovich & Karim Benchenane & Angelo Arleo, 2011. "Spatial Learning and Action Planning in a Prefrontal Cortical Network Model," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-21, May.
    18. Florian Raudies & Michael E Hasselmo, 2012. "Modeling Boundary Vector Cell Firing Given Optic Flow as a Cue," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-17, June.
    19. repec:plo:pcbi00:1002651 is not listed on IDEAS
    20. Avgar, Tal & Deardon, Rob & Fryxell, John M., 2013. "An empirically parameterized individual based model of animal movement, perception, and memory," Ecological Modelling, Elsevier, vol. 251(C), pages 158-172.
    21. Sabrina L. L. Maoz & Matthias Stangl & Uros Topalovic & Daniel Batista & Sonja Hiller & Zahra M. Aghajan & Barbara Knowlton & John Stern & Jean-Philippe Langevin & Itzhak Fried & Dawn Eliashiv & Nanth, 2023. "Dynamic neural representations of memory and space during human ambulatory navigation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64307-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.