IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58786-3.html
   My bibliography  Save this article

Hand position fields of neurons in the premotor cortex of macaques during natural reaching

Author

Listed:
  • Sheng-Hao Cao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Science)

  • Xin-Yong Han

    (Chinese Academy of Sciences
    Chinese Academy of Science)

  • Zhi-Ping Zhao

    (First Hospital of Jilin University)

  • Jian-Wen Gu

    (The 9th Medical Center of Chinese PLA General Hospital)

  • Tian-Zi Jiang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital)

  • Shan Yu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Science
    University of Chinese Academy of Sciences)

Abstract

While hippocampus represents spatial information through place cells for body navigation, whether motor areas employ a similar framework to guide hand reaching remains unknown. Here, we investigate tuning properties in dorsal premotor cortex (PMd) during naturalistic reach-and-grasp tasks in four monkeys. We find that 22% (132/601) of PMd neurons increase firing rates when the monkey’s hand occupies specific positions in space, forming the position fields. These cells represent the hand position highly efficiently, achieving ~80% accuracy for decoding hand trajectories with only 50 most dedicated position tuned cells ( ~ 10% of all recorded neurons). The hand position is co-represented with hand moving direction, speed, and reward location in the same population of PMd neurons, forming a mixed-selective framework to integrate positional and kinematic information. Our findings suggest field-like positional coding may be a mechanism shared across brain regions for spatial representation in goal-directed movements, including body navigation and forelimb reaching.

Suggested Citation

  • Sheng-Hao Cao & Xin-Yong Han & Zhi-Ping Zhao & Jian-Wen Gu & Tian-Zi Jiang & Shan Yu, 2025. "Hand position fields of neurons in the premotor cortex of macaques during natural reaching," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58786-3
    DOI: 10.1038/s41467-025-58786-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58786-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58786-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David A. Sabatini & Matthew T. Kaufman, 2024. "Reach-dependent reorientation of rotational dynamics in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Gamaleldin F. Elsayed & Antonio H. Lara & Matthew T. Kaufman & Mark M. Churchland & John P. Cunningham, 2016. "Reorganization between preparatory and movement population responses in motor cortex," Nature Communications, Nature, vol. 7(1), pages 1-15, December.
    3. Roddy M. Grieves & Selim Jedidi-Ayoub & Karyna Mishchanchuk & Anyi Liu & Sophie Renaudineau & Kate J. Jeffery, 2020. "The place-cell representation of volumetric space in rats," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Gily Ginosar & Johnatan Aljadeff & Yoram Burak & Haim Sompolinsky & Liora Las & Nachum Ulanovsky, 2021. "Locally ordered representation of 3D space in the entorhinal cortex," Nature, Nature, vol. 596(7872), pages 404-409, August.
    5. Hamidreza Abbaspourazad & Mahdi Choudhury & Yan T. Wong & Bijan Pesaran & Maryam M. Shanechi, 2021. "Multiscale low-dimensional motor cortical state dynamics predict naturalistic reach-and-grasp behavior," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    6. Emilio Kropff & James E. Carmichael & May-Britt Moser & Edvard I. Moser, 2015. "Speed cells in the medial entorhinal cortex," Nature, Nature, vol. 523(7561), pages 419-424, July.
    7. Christian F. Doeller & Caswell Barry & Neil Burgess, 2010. "Evidence for grid cells in a human memory network," Nature, Nature, vol. 463(7281), pages 657-661, February.
    8. Mark M. Churchland & John P. Cunningham & Matthew T. Kaufman & Justin D. Foster & Paul Nuyujukian & Stephen I. Ryu & Krishna V. Shenoy, 2012. "Neural population dynamics during reaching," Nature, Nature, vol. 487(7405), pages 51-56, July.
    9. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    10. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    11. Jonathan A Michaels & Benjamin Dann & Hansjörg Scherberger, 2016. "Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David A. Sabatini & Matthew T. Kaufman, 2024. "Reach-dependent reorientation of rotational dynamics in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Johnson Ying & Alexandra T. Keinath & Raphael Lavoie & Erika Vigneault & Salah El Mestikawy & Mark P. Brandon, 2022. "Disruption of the grid cell network in a mouse model of early Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    5. Qiming Shao & Ligu Chen & Xiaowan Li & Miao Li & Hui Cui & Xiaoyue Li & Xinran Zhao & Yuying Shi & Qiang Sun & Kaiyue Yan & Guangfu Wang, 2024. "A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Davide Spalla & Alessandro Treves & Charlotte N. Boccara, 2022. "Angular and linear speed cells in the parahippocampal circuits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Xiaoyang Long & Daniel Bush & Bin Deng & Neil Burgess & Sheng-Jia Zhang, 2025. "Allocentric and egocentric spatial representations coexist in rodent medial entorhinal cortex," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    8. Lukas K. Amann & Virginia Casasnovas & Alexander Gail, 2025. "Visual target and task-critical feedback uncertainty impair different stages of reach planning in motor cortex," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    9. Alexander Nitsch & Mona M. Garvert & Jacob L. S. Bellmund & Nicolas W. Schuck & Christian F. Doeller, 2024. "Grid-like entorhinal representation of an abstract value space during prospective decision making," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Irina Barnaveli & Simone Viganò & Daniel Reznik & Patrick Haggard & Christian F. Doeller, 2025. "Hippocampal-entorhinal cognitive maps and cortical motor system represent action plans and their outcomes," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    11. Tanner C Dixon & Christina M Merrick & Joni D Wallis & Richard B Ivry & Jose M Carmena, 2021. "Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-35, November.
    12. Wang, Xiaomeng & Yin, Lining & Yu, Ying & Wang, Qingyun, 2025. "Unraveling the dynamical mechanisms of motor preparation based on the heterogeneous attractor model," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    13. Yue-Qing Zhou & Vyash Puliyadi & Xiaojing Chen & Joonhee Leo Lee & Lan-Yuan Zhang & James J. Knierim, 2024. "Vector coding and place coding in hippocampus share a common directional signal," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Svenja Melbaum & Eleonora Russo & David Eriksson & Artur Schneider & Daniel Durstewitz & Thomas Brox & Ilka Diester, 2022. "Conserved structures of neural activity in sensorimotor cortex of freely moving rats allow cross-subject decoding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Sina Mackay & Thomas P. Reber & Marcel Bausch & Jan Boström & Christian E. Elger & Florian Mormann, 2024. "Concept and location neurons in the human brain provide the ‘what’ and ‘where’ in memory formation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Eric A. Kirk & Keenan T. Hope & Samuel J. Sober & Britton A. Sauerbrei, 2024. "An output-null signature of inertial load in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    17. Nir Even-Chen & Blue Sheffer & Saurabh Vyas & Stephen I Ryu & Krishna V Shenoy, 2019. "Structure and variability of delay activity in premotor cortex," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    18. Hao Guo & Shenbing Kuang & Alexander Gail, 2025. "Sensorimotor environment but not task rule reconfigures population dynamics in rhesus monkey posterior parietal cortex," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    19. Federica Sigismondi & Yangwen Xu & Mattia Silvestri & Roberto Bottini, 2024. "Altered grid-like coding in early blind people," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Roddy M Grieves, 2023. "Estimating neuronal firing density: A quantitative analysis of firing rate map algorithms," PLOS Computational Biology, Public Library of Science, vol. 19(12), pages 1-38, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58786-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.