IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13239.html
   My bibliography  Save this article

Reorganization between preparatory and movement population responses in motor cortex

Author

Listed:
  • Gamaleldin F. Elsayed

    (Center for Theoretical Neuroscience, Columbia University
    Columbia University Medical Center)

  • Antonio H. Lara

    (Columbia University Medical Center)

  • Matthew T. Kaufman

    (Cold Spring Harbor Laboratory)

  • Mark M. Churchland

    (Columbia University Medical Center
    Grossman Center for the Statistics of Mind, Columbia University
    David Mahoney Center for Brain and Behavior Research, Columbia University Medical Center
    Kavli Institute for Brain Science, Columbia University Medical Center)

  • John P. Cunningham

    (Center for Theoretical Neuroscience, Columbia University
    Grossman Center for the Statistics of Mind, Columbia University
    Columbia University)

Abstract

Neural populations can change the computation they perform on very short timescales. Although such flexibility is common, the underlying computational strategies at the population level remain unknown. To address this gap, we examined population responses in motor cortex during reach preparation and movement. We found that there exist exclusive and orthogonal population-level subspaces dedicated to preparatory and movement computations. This orthogonality yielded a reorganization in response correlations: the set of neurons with shared response properties changed completely between preparation and movement. Thus, the same neural population acts, at different times, as two separate circuits with very different properties. This finding is not predicted by existing motor cortical models, which predict overlapping preparation-related and movement-related subspaces. Despite orthogonality, responses in the preparatory subspace were lawfully related to subsequent responses in the movement subspace. These results reveal a population-level strategy for performing separate but linked computations.

Suggested Citation

  • Gamaleldin F. Elsayed & Antonio H. Lara & Matthew T. Kaufman & Mark M. Churchland & John P. Cunningham, 2016. "Reorganization between preparatory and movement population responses in motor cortex," Nature Communications, Nature, vol. 7(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13239
    DOI: 10.1038/ncomms13239
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13239
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nir Even-Chen & Blue Sheffer & Saurabh Vyas & Stephen I Ryu & Krishna V Shenoy, 2019. "Structure and variability of delay activity in premotor cortex," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    2. Alberto Lazari & Piergiorgio Salvan & Lennart Verhagen & Michiel Cottaar & Daniel Papp & Olof Jens van der Werf & Bronwyn Gavine & James Kolasinski & Matthew Webster & Charlotte J. Stagg & Matthew F. , 2022. "A macroscopic link between interhemispheric tract myelination and cortico-cortical interactions during action reprogramming," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Tanner C Dixon & Christina M Merrick & Joni D Wallis & Richard B Ivry & Jose M Carmena, 2021. "Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-35, November.
    5. Akshay Markanday & Sungho Hong & Junya Inoue & Erik Schutter & Peter Thier, 2023. "Multidimensional cerebellar computations for flexible kinematic control of movements," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.