IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63386-2.html
   My bibliography  Save this article

Fire risk to structures in California’s Wildland-Urban Interface

Author

Listed:
  • Maryam Zamanialaei

    (University of California)

  • Daniel San Martin

    (Universidad Técnica Federico Santa María)

  • Maria Theodori

    (University of California)

  • Dwi Marhaendro Jati Purnomo

    (University of California)

  • Ali Tohidi

    (University of Maryland)

  • Chris Lautenberger

    (CloudFire Inc.)

  • Yiren Qin

    (University of Maryland)

  • Arnaud Trouvé

    (University of Maryland)

  • Michael Gollner

    (University of California)

Abstract

The destructive impacts of wildfires on people, property and the environment have dramatically increased, especially in the Wildland-Urban Interface (WUI) in California. In these areas structures are threatened by both approaching flames and lofted embers which spread fire into and within communities. While independent factors influencing structure fire protection are well known, their combined effects remain largely unquantified, limiting the accuracy of risk assessments and mitigation strategies. Here, we examine five major historical WUI fires—2017 Tubbs, 2017 Thomas, 2018 Camp, 2019 Kincade, and 2020 Glass Fires—utilizing machine learning (ML) analysis of on-the-ground post-fire data collection, remotely sensed data, and fire reconstruction modeling to assess patterns of structure loss and mitigation effectiveness. We show that the spacing between structures is a critical factor influencing fire risk, highlighting the importance of structure arrangement, while fire exposure, the ignition resistance (hardening) of structures, and clearing around structures (defensible space) work in combination to mediate fire risk. Utilizing an XGBoost classifier, structure survivability can be predicted to 82% accuracy. Results highlight the effectiveness of hardening and defensible space, with a hypothetical 52% reduction in losses. Our findings emphasize the need for community-level mitigation to reduce structure loss in future WUI fires.

Suggested Citation

  • Maryam Zamanialaei & Daniel San Martin & Maria Theodori & Dwi Marhaendro Jati Purnomo & Ali Tohidi & Chris Lautenberger & Yiren Qin & Arnaud Trouvé & Michael Gollner, 2025. "Fire risk to structures in California’s Wildland-Urban Interface," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63386-2
    DOI: 10.1038/s41467-025-63386-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63386-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63386-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Max A. Moritz & Enric Batllori & Ross A. Bradstock & A. Malcolm Gill & John Handmer & Paul F. Hessburg & Justin Leonard & Sarah McCaffrey & Dennis C. Odion & Tania Schoennagel & Alexandra D. Syphard, 2014. "Learning to coexist with wildfire," Nature, Nature, vol. 515(7525), pages 58-66, November.
    2. Franz Schug & Avi Bar-Massada & Amanda R. Carlson & Heather Cox & Todd J. Hawbaker & David Helmers & Patrick Hostert & Dominik Kaim & Neda K. Kasraee & Sebastián Martinuzzi & Miranda H. Mockrin & Kira, 2023. "The global wildland–urban interface," Nature, Nature, vol. 621(7977), pages 94-99, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seijo, Francisco & Zavala, Gonzalo & Ballester, Rafael & Costa-Saura, Jose Maria & Sangüesa-Barreda, Gabriel & Camarero, Jesús Julio & Sáez, José Antonio López, 2024. "Contrasting state land and fire use policies condition fire regime seasonality and size in two Central Spain forest landscapes," Land Use Policy, Elsevier, vol. 147(C).
    2. Górriz-Mifsud, Elena & Burns, Matthew & Marini Govigli, Valentino, 2019. "Civil society engaged in wildfires: Mediterranean forest fire volunteer groupings," Forest Policy and Economics, Elsevier, vol. 102(C), pages 119-129.
    3. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    4. Ji Yun Lee & Fangjiao Ma & Yue Li, 2022. "Understanding homeowner proactive actions for managing wildfire risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1525-1547, November.
    5. Chao Yang & Haiying Xu & Qingquan Li & Xuqing Wang & Bohui Tang & Junyi Chen & Wei Tu & Yinghui Zhang & Tiezhu Shi & Min Chen & Wei Ma & Huizeng Liu & Jonathan M. Chase, 2025. "Global loss of mountain vegetated landscapes and its impact on biodiversity conservation," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Huy,Tung Nguyen & Adjognon, Guigonan Serge & van Soest,Daan, 2023. "Combatting Forest Fires in the Drylands of Sub-Saharan Africa : Quasi-Experimental Evidence from Burkina Faso," Policy Research Working Paper Series 10336, The World Bank.
    7. Alcasena, Fermín J. & Salis, Michele & Nauslar, Nicholas J. & Aguinaga, A. Eduardo & Vega-García, Cristina, 2016. "Quantifying economic losses from wildfires in black pine afforestations of northern Spain," Forest Policy and Economics, Elsevier, vol. 73(C), pages 153-167.
    8. Hazra, Devika & Gallagher, Patricia, 2022. "Role of insurance in wildfire risk mitigation," Economic Modelling, Elsevier, vol. 108(C).
    9. repec:plo:pone00:0153589 is not listed on IDEAS
    10. Galiana-Martín Luis, 2017. "Spatial Planning Experiences for Vulnerability Reduction in the Wildland-Urban Interface in Mediterranean European Countries," European Countryside, Sciendo, vol. 9(3), pages 577-593, September.
    11. Xu Chen & Surya T. Tokdar, 2021. "Joint quantile regression for spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 826-852, September.
    12. Feliu Serra-Burriel & Pedro Delicado & Fernando M. Cucchietti, 2021. "Wildfires Vegetation Recovery through Satellite Remote Sensing and Functional Data Analysis," Mathematics, MDPI, vol. 9(11), pages 1-22, June.
    13. Bruno Barbosa & Ana Gonçalves & Sandra Oliveira & Cláudia M. Viana, 2025. "Mapping Long-Term Wildfire Dynamics in Portugal Using Trajectory Analysis (1975–2024)," Land, MDPI, vol. 14(9), pages 1-15, September.
    14. Jacqueline Montoya Alvis & Gina Lía Orozco Mendoza & Jhon Wilder Zartha Sossa, 2025. "Extreme Fire Events in Wildland–Urban Interface Areas: A Review of the Literature Concerning Determinants for Risk Governance," Sustainability, MDPI, vol. 17(10), pages 1-35, May.
    15. Andrea Duane & Marc Castellnou & Lluís Brotons, 2021. "Towards a comprehensive look at global drivers of novel extreme wildfire events," Climatic Change, Springer, vol. 165(3), pages 1-21, April.
    16. Shrestha, Anusha & Grala, Robert K. & Grado, Stephen C. & Roberts, Scott D. & Gordon, Jason S. & Adhikari, Ram K., 2021. "Nonindustrial private forest landowner willingness to pay for prescribed burning to lower wildfire hazards," Forest Policy and Economics, Elsevier, vol. 127(C).
    17. Christine Eriksen & Gregory Simon, 2017. "The Affluence–Vulnerability Interface: Intersecting scales of risk, privilege and disaster," Environment and Planning A, , vol. 49(2), pages 293-313, February.
    18. Qilong Shao & Li Peng & Yichan Liu & Yongchang Li, 2023. "A Bibliometric Analysis of Urban Ecosystem Services: Structure, Evolution, and Prospects," Land, MDPI, vol. 12(2), pages 1-23, January.
    19. Mark R. Kreider & Philip E. Higuera & Sean A. Parks & William L. Rice & Nadia White & Andrew J. Larson, 2024. "Fire suppression makes wildfires more severe and accentuates impacts of climate change and fuel accumulation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Hongzhang Xu & Meng Peng & Jamie Pittock & Jiayu Xu, 2021. "Managing Rather Than Avoiding “Difficulties” in Building Landscape Resilience," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    21. Champ, Patricia A. & Meldrum, James R. & Brenkert-Smith, Hannah & Warziniack, Travis W. & Barth, Christopher M. & Falk, Lilia C. & Gomez, Jamie B., 2020. "Do actions speak louder than words? Comparing the effect of risk aversion on objective and self-reported mitigation measures," Journal of Economic Behavior & Organization, Elsevier, vol. 169(C), pages 301-313.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63386-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.