IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63365-7.html
   My bibliography  Save this article

Electrosynthesis of NH3 from low-concentration NO on cascade dual-site catalysts in neutral media

Author

Listed:
  • Xiaoxi Guo

    (Central South University
    Sichuan University
    Central South University)

  • Tongwei Wu

    (University of Electronic Science and Technology of China)

  • Hengfeng Li

    (Central South University)

  • Yanning Zhang

    (University of Electronic Science and Technology of China)

  • Chao Ma

    (Hunan University)

  • Hongmei Li

    (Central South University)

  • Liyuan Chai

    (Central South University)

  • Haitao Zhao

    (The Hong Kong Polytechnic University)

  • Min Liu

    (Central South University
    Central South University)

Abstract

Electrosynthesis of NH3 from low-concentration NO (NORR) in neutral media offers a sustainable nitrogen fixation strategy but is hindered by weak NO adsorption, slow water dissociation, and sluggish hydrogenation kinetics. Herein, we propose an intriguing strategy that successfully overcomes these limitations through using an electron-donating motif to modulate NO-affinitive catalysts, thereby creating dual active site with synergistic functionality. Specifically, we integrate electron-donating nanoparticles into a Fe single-atom catalyst (FeSAC), where Fe sites ensure strong NO adsorption, while electron-donating motifs promote water dissociation and NO hydrogenation. In situ X-ray absorption spectroscopy (XAS), in situ attenuated total reflection-infrared spectroscopy (ATR-IR), and theoretical calculations reveal that electron-donating motifs increase Fe site electron density, strengthening NO adsorption. Additionally, these motifs also promote water dissociation, supplying protons to lower the NO hydrogenation barrier. This synergistic interplay enables a cascade reaction mechanism, delivering a remarkable Faradaic efficiency (FE) of 90.3% and a NH3 yield rate of 709.7 µg h−1 mgcat.−1 under 1.0 vol% NO in neutral media, outperforming pure FeSAC (NH3 yield rate: 444.2 µg h−1 mgcat.−1, FE: 56.6%) and prior to systems operating under high NO concentrations. Notably, the high NH3 yield of 3207.7 μg h−1 mgcat.−1 is achieved in a membrane electrode assembly (MEA) electrolyzer under a 1.0 vol% NO. This work establishes an inspirational paradigm in NORR by simultaneously enhancing NO adsorption, water dissociation, and hydrogenation kinetics, providing a scalable route for efficient NH3 electrosynthesis from dilute NO sources.

Suggested Citation

  • Xiaoxi Guo & Tongwei Wu & Hengfeng Li & Yanning Zhang & Chao Ma & Hongmei Li & Liyuan Chai & Haitao Zhao & Min Liu, 2025. "Electrosynthesis of NH3 from low-concentration NO on cascade dual-site catalysts in neutral media," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63365-7
    DOI: 10.1038/s41467-025-63365-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63365-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63365-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xin Wan & Qingtao Liu & Jieyuan Liu & Shiyuan Liu & Xiaofang Liu & Lirong Zheng & Jiaxiang Shang & Ronghai Yu & Jianglan Shui, 2022. "Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Dong Hyun Kim & Stefan Ringe & Haesol Kim & Sejun Kim & Bupmo Kim & Geunsu Bae & Hyung-Suk Oh & Frédéric Jaouen & Wooyul Kim & Hyungjun Kim & Chang Hyuck Choi, 2021. "Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Jia-Yi Fang & Qi-Zheng Zheng & Yao-Yin Lou & Kuang-Min Zhao & Sheng-Nan Hu & Guang Li & Ouardia Akdim & Xiao-Yang Huang & Shi-Gang Sun, 2022. "Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Lieven E. Gevers & Linga R. Enakonda & Ameen Shahid & Samy Ould-Chikh & Cristina I. Q. Silva & Pasi P. Paalanen & Antonio Aguilar-Tapia & Jean-Louis Hazemann & Mohamed Nejib Hedhili & Fei Wen & Javier, 2022. "Unraveling the structure and role of Mn and Ce for NOx reduction in application-relevant catalysts," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Rui-Ting Gao & Jiangwei Zhang & Tomohiko Nakajima & Jinlu He & Xianhu Liu & Xueyuan Zhang & Lei Wang & Limin Wu, 2023. "Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Rui-Ting Gao & Zehua Gao & Nhat Truong Nguyen & Junxiang Chen & Xianhu Liu & Lei Wang & Limin Wu, 2025. "Photoelectrochemical production of disinfectants from seawater," Nature Sustainability, Nature, vol. 8(6), pages 672-681, June.
    7. Yusuke Inomata & Hiroe Kubota & Shinichi Hata & Eiji Kiyonaga & Keiichiro Morita & Kazuhiro Yoshida & Norihito Sakaguchi & Takashi Toyao & Ken-ichi Shimizu & Satoshi Ishikawa & Wataru Ueda & Masatake , 2021. "Bulk tungsten-substituted vanadium oxide for low-temperature NOx removal in the presence of water," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Susan C. Anenberg & Joshua Miller & Ray Minjares & Li Du & Daven K. Henze & Forrest Lacey & Christopher S. Malley & Lisa Emberson & Vicente Franco & Zbigniew Klimont & Chris Heyes, 2017. "Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets," Nature, Nature, vol. 545(7655), pages 467-471, May.
    9. Jiaqi Shao & Huijuan Jing & Pengfei Wei & Xiaoyan Fu & Long Pang & Yanpeng Song & Ke Ye & Mingrun Li & Luozhen Jiang & Jingyuan Ma & Rongtan Li & Rui Si & Zhangquan Peng & Guoxiong Wang & Jianping Xia, 2023. "Electrochemical synthesis of ammonia from nitric oxide using a copper–tin alloy catalyst," Nature Energy, Nature, vol. 8(11), pages 1273-1283, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deyou Yu & Licong Xu & Kaixing Fu & Xia Liu & Shanli Wang & Minghua Wu & Wangyang Lu & Chunyu Lv & Jinming Luo, 2024. "Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xiaotian Guo & Rui-Ting Gao & Shijie Ren & Nhat Truong Nguyen & Haojie Chen & Limin Wu & Lei Wang, 2025. "Direct ammonia and dihydroxyacetone production in an unbiased photoelectrochemical cell," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    3. Wen-jun Wang & Yan-ni Liu & Xin-ru Ying, 2022. "Does Technological Innovation Curb O 3 Pollution? Evidence from Three Major Regions in China," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    4. Xiyang Wang & Qilei Yang & Xinbo Li & Zhen Li & Chuan Gao & Hui Zhang & Xuefeng Chu & Carl Redshaw & Shucheng Shi & Yimin A. Wu & Yongliang Ma & Yue Peng & Junhua Li & Shouhua Feng, 2024. "Exploring the dynamic evolution of lattice oxygen on exsolved-Mn2O3@SmMn2O5 interfaces for NO Oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Cai, Hao & Burnham, Andrew & Chen, Rui & Wang, Michael, 2017. "Wells to wheels: Environmental implications of natural gas as a transportation fuel," Energy Policy, Elsevier, vol. 109(C), pages 565-578.
    6. Yangbo Ma & Liang Guo & Liang Chang & Weihua Guo & Tao Zhou & Fengkun Hao & Wenda Su & Jingwen Zhou & Guozhi Wang & Mingzheng Shao & Jihan Yu & Jinwen Yin & Yunhao Wang & Fu Liu & An Zhang & Kun Qian , 2025. "Unconventional phase metal heteronanostructures with tunable exposed interface for efficient tandem nitrate electroreduction to ammonia," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    7. Paula Quentin & Jost Buscher & Thomas Eltner, 2023. "Transport Planning beyond Infrastructural Change: An Empirical Analysis of Transport Planning Practices in the Rhine-Main Region in Germany," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    8. Lu Wang & Xue Chen & Yan Xia & Linhui Jiang & Jianjie Ye & Tangyan Hou & Liqiang Wang & Yibo Zhang & Mengying Li & Zhen Li & Zhe Song & Yaping Jiang & Weiping Liu & Pengfei Li & Xiaoye Zhang & Shaocai, 2022. "Operational Data-Driven Intelligent Modelling and Visualization System for Real-World, On-Road Vehicle Emissions—A Case Study in Hangzhou City, China," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    9. Feng, Tong & Sun, Yuechi & Shi, Yating & Ma, Jie & Feng, Chunmei & Chen, Zhenni, 2024. "Air pollution control policies and impacts: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Yuanbo Zhou & Lifang Zhang & Mengfan Wang & Xiaowei Shen & Zebin Zhu & Tao Qian & Chenglin Yan & Jianmei Lu, 2025. "Maximized atom utilization in a high-entropy metallene via single atom alloying for boosted nitrate electroreduction to ammonia," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    11. Eckard Helmers & Johannes Dietz & Martin Weiss, 2020. "Sensitivity Analysis in the Life-Cycle Assessment of Electric vs. Combustion Engine Cars under Approximate Real-World Conditions," Sustainability, MDPI, vol. 12(3), pages 1-31, February.
    12. Börjesson, Maria & Bastian, Anne & Eliasson, Jonas, 2021. "The economics of low emission zones," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 99-114.
    13. Dong, Zhaoyingzi & Xia, Chuyu & Fang, Kai & Zhang, Weiwen, 2022. "Effect of the carbon emissions trading policy on the co-benefits of carbon emissions reduction and air pollution control," Energy Policy, Elsevier, vol. 165(C).
    14. Theodoros Kossioris & Robert Maurer & Stefan Sterlepper & Marco Günther & Stefan Pischinger, 2025. "Achieving NOx Emissions with Zero-Impact on Air Quality from Diesel Light-Duty Commercial Vehicles," Energies, MDPI, vol. 18(8), pages 1-23, April.
    15. Youze Zeng & Xue Wang & Wei Qi & Changpeng Liu & Lanlu Lu & Meiling Xiao & Kai Li & Fei Xiao & Minhua Shao & Wei Xing & Jianbing Zhu, 2025. "Aligned d-orbital energy level of dual-atom sites catalysts for oxygen reduction reaction in anion exchange membrane fuel cells," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    16. Junfang Wang & Zhenxian Xu & Wenhui Lu & Yan Ding & Yunjing Wang & Lijun Hao & Yunshan Ge, 2024. "Emission Durability of a China-6 Light-Duty Gasoline Vehicle," Sustainability, MDPI, vol. 16(17), pages 1-14, August.
    17. Jiao Lan & Zhen Wang & Cheng-wei Kao & Ying-Rui Lu & Feng Xie & Yongwen Tan, 2024. "Isolating Cu-Zn active-sites in Ordered Intermetallics to Enhance Nitrite-to-Ammonia Electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Haoran Li & Ali Cheshmehzangi & Zhiang Zhang & Zhaohui Su & Saeid Pourroostaei Ardakani & Maycon Sedrez & Ayotunde Dawodu, 2022. "The Correlation Analysis between Air Quality and Construction Sites: Evaluation in the Urban Environment during the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    19. Sishuang Tang & Minghao Xie & Saerom Yu & Xun Zhan & Ruilin Wei & Maoyu Wang & Weixin Guan & Bowen Zhang & Yuyang Wang & Hua Zhou & Gengfeng Zheng & Yuanyue Liu & Jamie H. Warner & Guihua Yu, 2024. "General synthesis of high-entropy single-atom nanocages for electrosynthesis of ammonia from nitrate," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Zeyu Tao & Yuanmeng Tian & Ruoxin Wang & Tianyi Zhang & Tianqi Wang & Handan Zhang & Muyao Li & Jiangxiao Qiao & Ming Kong & Shasha Feng & Zhi Ning & Huanting Wang & Qinfen Gu & Jin Shang, 2025. "Zero-emission NO2 capture using divalent metal cation-exchanged zeolites for air purification," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63365-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.