IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63359-5.html
   My bibliography  Save this article

Universal photonic processor for spatial mode decomposition

Author

Listed:
  • Varun Sharma

    (University of Graz, NAWI Graz
    Max Planck–University of Ottawa Centre for Extreme and Quantum Photonics)

  • Dorian Brandmüller

    (University of Graz, NAWI Graz
    Institute of Physics)

  • Johannes Bütow

    (University of Graz, NAWI Graz
    Institute of Physics)

  • Jörg S. Eismann

    (University of Graz, NAWI Graz
    Institute of Physics
    Max Planck Institute for the Science of Light)

  • Peter Banzer

    (University of Graz, NAWI Graz
    Max Planck–University of Ottawa Centre for Extreme and Quantum Photonics
    Institute of Physics
    Max Planck Institute for the Science of Light)

Abstract

Efficient and precise information storage and processing using light’s various degrees of freedom - intensity, phase, and polarization - have vast applications in modern photonics. The corresponding utilization necessitates the accurate measurement and decomposition of arbitrary spatial modes into their orthogonal components. In this paper, we introduce a new modal decomposition technique based on a 16-pixel reconfigurable photonic integrated circuit programmed as a spatial mode decomposer. This device uniquely identifies and quantifies the relative contributions of constituent modes in a Laguerre-Gaussian basis. The presented device not only provides the relative weights of these modes but also their relative phases, offering a novel approach based on an integrated platform for optical information processing. We further highlight a novel input interface that enables the decomposition of input beam polarization into circular polarization basis. The potential applications of this technology are vast, ranging from advanced optical communications to microscopy and beyond, marking a significant stride in the field of integrated photonics.

Suggested Citation

  • Varun Sharma & Dorian Brandmüller & Johannes Bütow & Jörg S. Eismann & Peter Banzer, 2025. "Universal photonic processor for spatial mode decomposition," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63359-5
    DOI: 10.1038/s41467-025-63359-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63359-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63359-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wim Bogaerts & Daniel Pérez & José Capmany & David A. B. Miller & Joyce Poon & Dirk Englund & Francesco Morichetti & Andrea Melloni, 2020. "Programmable photonic circuits," Nature, Nature, vol. 586(7828), pages 207-216, October.
    2. Alois Mair & Alipasha Vaziri & Gregor Weihs & Anton Zeilinger, 2001. "Entanglement of the orbital angular momentum states of photons," Nature, Nature, vol. 412(6844), pages 313-316, July.
    3. Alberto Peruzzo & Anthony Laing & Alberto Politi & Terry Rudolph & Jeremy L. O'Brien, 2011. "Multimode quantum interference of photons in multiport integrated devices," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    4. Nicolas K. Fontaine & Roland Ryf & Haoshuo Chen & David T. Neilson & Kwangwoong Kim & Joel Carpenter, 2019. "Laguerre-Gaussian mode sorter," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Martin Neugebauer & Paweł Woźniak & Ankan Bag & Gerd Leuchs & Peter Banzer, 2016. "Polarization-controlled directional scattering for nanoscopic position sensing," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
    6. Ankan Bag & Martin Neugebauer & Uwe Mick & Silke Christiansen & Sebastian A. Schulz & Peter Banzer, 2020. "Towards fully integrated photonic displacement sensors," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaihang Lu & Zengqi Chen & Hao Chen & Wu Zhou & Zunyue Zhang & Hon Ki Tsang & Yeyu Tong, 2024. "Empowering high-dimensional optical fiber communications with integrated photonic processors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Raoul Trines & Holger Schmitz & Martin King & Paul McKenna & Robert Bingham, 2024. "Laser harmonic generation with independent control of frequency and orbital angular momentum," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yan, Lifen & Zhang, Dong & Zhu, Haiyong, 2025. "Stable fractional vortex solitons in a ring potential," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    4. Ali Najjar Amiri & Aycan Deniz Vit & Kazim Gorgulu & Emir Salih Magden, 2024. "Deep photonic network platform enabling arbitrary and broadband optical functionality," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Chenhao Li & Torsten Wieduwilt & Fedja J. Wendisch & Andrés Márquez & Leonardo de S. Menezes & Stefan A. Maier & Markus A. Schmidt & Haoran Ren, 2023. "Metafiber transforming arbitrarily structured light," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Go Soma & Kento Komatsu & Yoshiaki Nakano & Takuo Tanemura, 2025. "Complete vectorial optical mode converter using multi-layer metasurface," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    7. Kazuma Taki & Naoki Sekine & Kouhei Watanabe & Yuto Miyatake & Tomohiro Akazawa & Hiroya Sakumoto & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2024. "Nonvolatile optical phase shift in ferroelectric hafnium zirconium oxide," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Rodrigo Gutiérrez-Cuevas & Dorian Bouchet & Julien Rosny & Sébastien M. Popoff, 2024. "Reaching the precision limit with tensor-based wavefront shaping," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Wang, Qing & Wang, Jun & Zhu, Lin & Li, Hong & He, Jun-Rong, 2024. "Rotation controlled mode conversion of quasi-solitons in potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    11. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Yang Yang & Robert J. Chapman & Ben Haylock & Francesco Lenzini & Yogesh N. Joglekar & Mirko Lobino & Alberto Peruzzo, 2024. "Programmable high-dimensional Hamiltonian in a photonic waveguide array," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Valeria Saggio & Carlos Errando-Herranz & Samuel Gyger & Christopher Panuski & Mihika Prabhu & Lorenzo Santis & Ian Christen & Dalia Ornelas-Huerta & Hamza Raniwala & Connor Gerlach & Marco Colangelo , 2024. "Cavity-enhanced single artificial atoms in silicon," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    14. Joo, Mingyu & Kim, Seung Hyun & Ghose, Anindya & Wilbur, Kenneth C., 2023. "Designing Distributed Ledger technologies, like Blockchain, for advertising markets," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 12-21.
    15. Chen, Kexin & Shamshiripour, Ali & Seshadri, Ravi & Hasnine, Md Sami & Yoo, Lisa & Guan, Jinping & Alho, Andre Romano & Feldman, Daniel & Ben-Akiva, Moshe, 2024. "Potential short- to long-term impacts of on-demand urban air mobility on transportation demand in North America," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    16. Xin Liu & Qian Cao & Nianjia Zhang & Andy Chong & Yangjian Cai & Qiwen Zhan, 2024. "Spatiotemporal optical vortices with controllable radial and azimuthal quantum numbers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Mark Dong & Julia M. Boyle & Kevin J. Palm & Matthew Zimmermann & Alex Witte & Andrew J. Leenheer & Daniel Dominguez & Gerald Gilbert & Matt Eichenfield & Dirk Englund, 2023. "Synchronous micromechanically resonant programmable photonic circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Xinxin Gao & Ze Gu & Qian Ma & Bao Jie Chen & Kam-Man Shum & Wen Yi Cui & Jian Wei You & Tie Jun Cui & Chi Hou Chan, 2024. "Terahertz spoof plasmonic neural network for diffractive information recognition and processing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Yandong Li & Francesco Monticone, 2025. "The spatial complexity of optical computing: toward space-efficient design," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    20. Alexander Song & Sai Nikhilesh Murty Kottapalli & Rahul Goyal & Bernhard Schölkopf & Peer Fischer, 2024. "Low-power scalable multilayer optoelectronic neural networks enabled with incoherent light," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63359-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.