IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62719-5.html
   My bibliography  Save this article

Unprecedented large-scale aquifer recovery through human intervention

Author

Listed:
  • Di Long

    (Tsinghua University
    Tsinghua University)

  • Yuancheng Xu

    (Tsinghua University
    Tsinghua University)

  • Yingjie Cui

    (Tsinghua University
    Tsinghua University)

  • Yanhong Cui

    (Tsinghua University
    Tsinghua University)

  • James J. Butler

    (University of Kansas)

  • Liang Dong

    (Tsinghua University
    Tsinghua University)

  • Longfeng Wang

    (China Institute of Geo-Environment Monitoring)

  • Dongyong Liu

    (China Institute of Geo-Environment Monitoring)

  • Yoshihide Wada

    (King Abdullah University of Science and Technology)

  • Litang Hu

    (Beijing Normal University)

  • Guoying Bai

    (Beijing Hydrology Center)

  • Binghua Li

    (Beijing Water Science and Technology Institute)

  • Shufang Wang

    (Beijing Institute of Geological Environment Monitoring)

  • Xizhi Nong

    (Tsinghua University
    Guangxi University)

  • Yang Cai

    (Ministry of Water Resources)

  • Chunsheng Cheng

    (Ministry of Water Resources)

  • Yuhan Mu

    (Ministry of Water Resources)

  • Yu Qiao

    (China South-to-North Water Diversion Corporation Limited)

  • Jianhua Wang

    (China Institute of Water Resources and Hydropower Research)

  • Hao Wang

    (China Institute of Water Resources and Hydropower Research)

  • Bridget R. Scanlon

    (University of Texas at Austin)

Abstract

Groundwater depletion is a critical global challenge, particularly in intensively cultivated drylands, with few documented cases of successful recovery. Here, we report a striking reversal of long-term groundwater decline in the North China Plain, one of the world’s most severely depleted aquifers. Based on a comprehensive analysis of groundwater levels from over 2000 monitoring wells spanning the past two decades, we show that groundwater levels have risen at an average rate of ~0.7 m year−1 since 2020, surpassing 2005 levels by 2024. This recovery is driven by a combination of large-scale surface water diversion from the humid south and stringent groundwater pumping regulations, further amplified by wet years (e.g., 2021). From 2005 to 2023, these policies reduced annual groundwater abstraction by ~12 km3 and increased environmental water allocations to over 7 km3 since 2021, promoting aquifer recharge and restoring environmental flows. Our findings demonstrate that rapid, large-scale groundwater recovery is achievable through integrated water management and targeted policy interventions across extensive regions (~130,000 km2).

Suggested Citation

  • Di Long & Yuancheng Xu & Yingjie Cui & Yanhong Cui & James J. Butler & Liang Dong & Longfeng Wang & Dongyong Liu & Yoshihide Wada & Litang Hu & Guoying Bai & Binghua Li & Shufang Wang & Xizhi Nong & Y, 2025. "Unprecedented large-scale aquifer recovery through human intervention," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62719-5
    DOI: 10.1038/s41467-025-62719-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62719-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62719-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    2. Deines, Jillian M. & Schipanski, Meagan E. & Golden, Bill & Zipper, Samuel C. & Nozari, Soheil & Rottler, Caitlin & Guerrero, Bridget & Sharda, Vaishali, 2020. "Transitions from irrigated to dryland agriculture in the Ogallala Aquifer: Land use suitability and regional economic impacts," Agricultural Water Management, Elsevier, vol. 233(C).
    3. Di Long & Wenting Yang & Bridget R. Scanlon & Jianshi Zhao & Dagen Liu & Peter Burek & Yun Pan & Liangzhi You & Yoshihide Wada, 2020. "South-to-North Water Diversion stabilizing Beijing’s groundwater levels," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Tejasvi Chauhan & Anjana Devanand & Mathew Koll Roxy & Karumuri Ashok & Subimal Ghosh, 2023. "River interlinking alters land-atmosphere feedback and changes the Indian summer monsoon," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Scott Jasechko & Hansjörg Seybold & Debra Perrone & Ying Fan & Mohammad Shamsudduha & Richard G. Taylor & Othman Fallatah & James W. Kirchner, 2024. "Rapid groundwater decline and some cases of recovery in aquifers globally," Nature, Nature, vol. 625(7996), pages 715-721, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamad Reza Soltanian & Farzad Moeini & Zhenxue Dai & Audrey H. Sawyer & Jan H. Fleckenstein & John Doherty & Zachary Curtis & Abhijit Chaudhuri & Gabriele Chiogna & Marwan Fahs & Weon Shik Han & Zai, 2024. "Sustainability Nexus AID: groundwater," Sustainability Nexus Forum, Springer, vol. 32(1), pages 1-12, December.
    2. Zipper, Sam & Kastens, Jude & Foster, Timothy & Wilson, Blake B. & Melton, Forrest & Grinstead, Ashley & Deines, Jillian M. & Butler, James J. & Marston, Landon T., 2024. "Estimating irrigation water use from remotely sensed evapotranspiration data: Accuracy and uncertainties at field, water right, and regional scales," Agricultural Water Management, Elsevier, vol. 303(C).
    3. Eekhout, J.P.C. & Delsman, I. & Baartman, J.E.M. & van Eupen, M. & van Haren, C. & Contreras, S. & Martínez-López, J. & de Vente, J., 2024. "How future changes in irrigation water supply and demand affect water security in a Mediterranean catchment," Agricultural Water Management, Elsevier, vol. 297(C).
    4. Yuan Li & Rui Wang & Hongbo Ma & Jian-Min Zhang, 2025. "Rising groundwater table due to restoration projects amplifies earthquake induced liquefaction risk in Beijing," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    5. Hans Jørgen Henriksen & Lars Troldborg & Maria Ondracek, 2024. "Model and Ensemble Indicator-Guided Assessment of Robust, Exploitable Groundwater Resources for Denmark," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
    6. Luo, Jianmei & Guo, Ying & Qi, Yongqing & Shen, Yanjun, 2025. "Pathways to balancing water and food for agricultural sustainable development in the Beijing-Tianjin-Hebei Region, China," Agricultural Water Management, Elsevier, vol. 310(C).
    7. Kelly, T.D. & Foster, T. & Schultz, David M., 2023. "Assessing the value of adapting irrigation strategies within the season," Agricultural Water Management, Elsevier, vol. 275(C).
    8. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    9. Zhang, Qingsong & Sun, Jiahao & Dai, Changlei & Zhang, Guangxin & Wu, Yanfeng, 2024. "Sustainable development of groundwater resources under the large-scale conversion of dry land into rice fields," Agricultural Water Management, Elsevier, vol. 298(C).
    10. Jérôme Texier & Julio Gonçalvès & Agnès Rivière, 2022. "Numerical Assessment of Groundwater Flowpaths below a Streambed in Alluvial Plains Impacted by a Pumping Field," Post-Print hal-03629140, HAL.
    11. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    12. Onyekwelu, Ikenna & Zipper, Sam & Welch, Stephen & Sharda, Vaishali, 2025. "Quantifying future climate impacts on maize productivity under different irrigation management strategies: A high-resolution spatial analysis in the U.S. Great Plains," Agricultural Water Management, Elsevier, vol. 313(C).
    13. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    14. Christina Caron, 2024. "Eroding Natural Capital: An Alternative Explanation for the Secular Decline in Productivity Growth," International Productivity Monitor, Centre for the Study of Living Standards, vol. 47, pages 109-147, Fall.
    15. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    16. M. W. Straatsma & P. T. M. Vermeulen & M. J. M. Kuijper & M. Bonte & F. G. M. Niele & M. F. P. Bierkens, 2016. "Rapid Screening of Operational Freshwater Availability Using Global Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3013-3026, July.
    17. Arthur, Lilian & Vondolia, Godwin Kofi & Dasmani, Isaac, 2024. "Superstition and attitudes towards restoration of a mining-degraded forest reserve: Evidence from Ghana," Forest Policy and Economics, Elsevier, vol. 168(C).
    18. Matthew Sanderson & R. Frey, 2015. "Structural impediments to sustainable groundwater management in the High Plains Aquifer of western Kansas," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(3), pages 401-417, September.
    19. Simon A. Schroeter & Alice May Orme & Katharina Lehmann & Robert Lehmann & Narendrakumar M. Chaudhari & Kirsten Küsel & He Wang & Anke Hildebrandt & Kai Uwe Totsche & Susan Trumbore & Gerd Gleixner, 2025. "Hydroclimatic extremes threaten groundwater quality and stability," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    20. J. Joseph Speidel & Jane N. O’Sullivan, 2023. "Advancing the Welfare of People and the Planet with a Common Agenda for Reproductive Justice, Population, and the Environment," World, MDPI, vol. 4(2), pages 1-29, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62719-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.