IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62451-0.html
   My bibliography  Save this article

Molecular-resolution imaging of ice crystallized from liquid water by cryogenic liquid-cell TEM

Author

Listed:
  • Jingshan S. Du

    (Pacific Northwest National Laboratory)

  • Suvo Banik

    (Argonne National Laboratory
    University of Illinois)

  • Henry Chan

    (Argonne National Laboratory)

  • Birk Fritsch

    (Forschungszentrum Jülich GmbH)

  • Ying Xia

    (University of Washington)

  • Ajay S. Karakoti

    (Pacific Northwest National Laboratory)

  • Andreas Hutzler

    (Forschungszentrum Jülich GmbH)

  • Subramanian K. R. S. Sankaranarayanan

    (Argonne National Laboratory
    University of Illinois)

  • James J. De Yoreo

    (Pacific Northwest National Laboratory
    University of Washington)

Abstract

Despite the ubiquity of ice, a molecular-resolution image of nanoscopic defects or microstructures in ice crystallized from liquid water has never been obtained. This is mainly due to the difficulties in preparing and preserving crystalline ice samples that can survive under high-resolution imaging conditions. Here, we report the stabilization and Å-resolution electron imaging of ice Ih crystallized from liquid water by developing cryogenic liquid-cell transmission electron microscopy (CRYOLIC-TEM). We combine lattice mapping with molecular dynamics simulations to reveal that ice formation is highly tolerant to nanoscale defects such as misoriented subdomains and trapped gas bubbles, which are stabilized by molecular-scale structural motifs. Importantly, bubble surfaces adopt low-energy nanofacets and create negligible strain fields in the surrounding crystal. These bubbles can dynamically nucleate, grow, migrate, dissolve, and coalesce under electron irradiation and be monitored in situ near a steady state. This work improves our understanding of water crystallization behaviors at a molecular spatial resolution.

Suggested Citation

  • Jingshan S. Du & Suvo Banik & Henry Chan & Birk Fritsch & Ying Xia & Ajay S. Karakoti & Andreas Hutzler & Subramanian K. R. S. Sankaranarayanan & James J. De Yoreo, 2025. "Molecular-resolution imaging of ice crystallized from liquid water by cryogenic liquid-cell TEM," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62451-0
    DOI: 10.1038/s41467-025-62451-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62451-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62451-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Runze Ma & Duanyun Cao & Chongqin Zhu & Ye Tian & Jinbo Peng & Jing Guo & Ji Chen & Xin-Zheng Li & Joseph S. Francisco & Xiao Cheng Zeng & Li-Mei Xu & En-Ge Wang & Ying Jiang, 2020. "Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice," Nature, Nature, vol. 577(7788), pages 60-63, January.
    2. Guoying Bai & Dong Gao & Zhang Liu & Xin Zhou & Jianjun Wang, 2019. "Probing the critical nucleus size for ice formation with graphene oxide nanosheets," Nature, Nature, vol. 576(7787), pages 437-441, December.
    3. Henry Chan & Mathew J. Cherukara & Badri Narayanan & Troy D. Loeffler & Chris Benmore & Stephen K. Gray & Subramanian K. R. S. Sankaranarayanan, 2019. "Machine learning coarse grained models for water," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    4. Minyoung Lee & Sang Yup Lee & Min-Ho Kang & Tae Kyung Won & Sungsu Kang & Joodeok Kim & Jungwon Park & Dong June Ahn, 2024. "Observing growth and interfacial dynamics of nanocrystalline ice in thin amorphous ice films," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Xudan Huang & Lifen Wang & Keyang Liu & Lei Liao & Huacong Sun & Jianlin Wang & Xuezeng Tian & Zhi Xu & Wenlong Wang & Lei Liu & Ying Jiang & Ji Chen & Enge Wang & Xuedong Bai, 2023. "Tracking cubic ice at molecular resolution," Nature, Nature, vol. 617(7959), pages 86-91, May.
    6. Jiani Hong & Ye Tian & Tiancheng Liang & Xinmeng Liu & Yizhi Song & Dong Guan & Zixiang Yan & Jiadong Guo & Binze Tang & Duanyun Cao & Jing Guo & Ji Chen & Ding Pan & Li-Mei Xu & En-Ge Wang & Ying Jia, 2024. "Imaging surface structure and premelting of ice Ih with atomic resolution," Nature, Nature, vol. 630(8016), pages 375-380, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zi-Feng Yuan & Ye Tian & Binze Tang & Tiancheng Liang & Chon-Hei Lo & Zixiang Yan & Dong Guan & Jiadong Guo & En-Ge Wang & Ying Jiang & Limei Xu, 2025. "Atomic-resolution imaging reveals nucleus-free crystallization in two-dimensional amorphous ice on graphite," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Minyoung Lee & Sang Yup Lee & Min-Ho Kang & Tae Kyung Won & Sungsu Kang & Joodeok Kim & Jungwon Park & Dong June Ahn, 2024. "Observing growth and interfacial dynamics of nanocrystalline ice in thin amorphous ice films," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Meng Li & Nifang Zhao & Anran Mao & Mengning Wang & Ziyu Shao & Weiwei Gao & Hao Bai, 2023. "Preferential ice growth on grooved surface for crisscross-aligned graphene aerogel with large negative Poisson’s ratio," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Pengcheng Chen & Qiuhao Xu & Zijing Ding & Qing Chen & Jiyu Xu & Zhihai Cheng & Xiaohui Qiu & Bingkai Yuan & Sheng Meng & Nan Yao, 2023. "Identification of a common ice nucleus on hydrophilic and hydrophobic close-packed metal surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Tarkocin, Coskun & Donduran, Murat, 2024. "Constructing early warning indicators for banks using machine learning models," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    7. Shinnosuke Horiuchi & Shota Ogura & Kazuya Otsubo & Yuka Ikemoto & Hisao Kiuchi & Yudai Shinozaki & Hiromi Tsuyuki & Go Watanabe & Osamu Takahashi & Mikihiro Hayashi & Eri Sakuda & Yasuhiro Arikawa & , 2025. "Low-entropy supramolecular crystals elucidating the inhomogeneity of interfacial water molecules at atomic resolution," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    8. Felix Kohler & Olivier Pierre-Louis & Dag Kristian Dysthe, 2022. "Crystal growth in confinement," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Bo Lin & Jian Jiang & Xiao Cheng Zeng & Lei Li, 2023. "Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Ye Tian & Botao Huang & Yizhi Song & Yirui Zhang & Dong Guan & Jiani Hong & Duanyun Cao & Enge Wang & Limei Xu & Yang Shao-Horn & Ying Jiang, 2024. "Effect of ion-specific water structures at metal surfaces on hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Jinhao Li & Jie Cao & Rong Bian & Rongtai Wan & Xiangyang Zhu & Baoyang Lu & Guoying Gu, 2025. "Multimaterial cryogenic printing of three-dimensional soft hydrogel machines," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    12. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Fuqiang Chu & Shuxin Li & Canjun Zhao & Yanhui Feng & Yukai Lin & Xiaomin Wu & Xiao Yan & Nenad Miljkovic, 2024. "Interfacial ice sprouting during salty water droplet freezing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Alexander J. Bryer & Juan S. Rey & Juan R. Perilla, 2023. "Performance efficient macromolecular mechanics via sub-nanometer shape based coarse graining," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Zibing Wang & Zifeng Yuan & Mouyang Cheng & Xudan Huang & Keyang Liu & Yihan Wang & Huacong Sun & Lei Liao & Zhi Xu & Ji Chen & Wenlong Wang & Lei Liu & Xuedong Bai & Limei Xu & Enge Wang & Lifen Wang, 2025. "Molecularly resolved mapping of heterogeneous ice nucleation and crystallization pathways using in-situ cryo-TEM," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Leal Filho, Walter & Wall, Tony & Rui Mucova, Serafino Afonso & Nagy, Gustavo J. & Balogun, Abdul-Lateef & Luetz, Johannes M. & Ng, Artie W. & Kovaleva, Marina & Safiul Azam, Fardous Mohammad & Alves,, 2022. "Deploying artificial intelligence for climate change adaptation," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    18. Mokshin, Anatolii V. & Khabibullin, Roman A., 2022. "Is there a one-to-one correspondence between interparticle interactions and physical properties of liquid?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    19. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    20. Stephan Thaler & Julija Zavadlav, 2021. "Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62451-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.