IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32193-4.html
   My bibliography  Save this article

Ultrahigh resistance of hexagonal boron nitride to mineral scale formation

Author

Listed:
  • Kuichang Zuo

    (Peking University
    Rice University
    Rice University)

  • Xiang Zhang

    (Rice University
    Rice University)

  • Xiaochuan Huang

    (Rice University
    Rice University)

  • Eliezer F. Oliveira

    (Rice University
    São Paulo State Department of Education)

  • Hua Guo

    (Rice University)

  • Tianshu Zhai

    (Rice University)

  • Weipeng Wang

    (Tsinghua University)

  • Pedro J. J. Alvarez

    (Rice University
    Rice University)

  • Menachem Elimelech

    (Rice University
    Yale University)

  • Pulickel M. Ajayan

    (Rice University
    Rice University)

  • Jun Lou

    (Rice University
    Rice University
    Rice University)

  • Qilin Li

    (Rice University
    Rice University
    Rice University
    Rice University)

Abstract

Formation of mineral scale on a material surface has profound impact on a wide range of natural processes as well as industrial applications. However, how specific material surface characteristics affect the mineral-surface interactions and subsequent mineral scale formation is not well understood. Here we report the superior resistance of hexagonal boron nitride (hBN) to mineral scale formation compared to not only common metal and polymer surfaces but also the highly scaling-resistant graphene, making hBN possibly the most scaling resistant material reported to date. Experimental and simulation results reveal that this ultrahigh scaling-resistance is attributed to the combination of hBN’s atomically-smooth surface, in-plane atomic energy corrugation due to the polar boron-nitrogen bond, and the close match between its interatomic spacing and the size of water molecules. The latter two properties lead to strong polar interactions with water and hence the formation of a dense hydration layer, which strongly hinders the approach of mineral ions and crystals, decreasing both surface heterogeneous nucleation and crystal attachment.

Suggested Citation

  • Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32193-4
    DOI: 10.1038/s41467-022-32193-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32193-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32193-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Hu & M. Lozada-Hidalgo & F. C. Wang & A. Mishchenko & F. Schedin & R. R. Nair & E. W. Hill & D. W. Boukhvalov & M. I. Katsnelson & R. A. W. Dryfe & I. V. Grigorieva & H. A. Wu & A. K. Geim, 2014. "Proton transport through one-atom-thick crystals," Nature, Nature, vol. 516(7530), pages 227-230, December.
    2. Akitoshi Shiotari & Yoshiaki Sugimoto, 2017. "Ultrahigh-resolution imaging of water networks by atomic force microscopy," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    3. Joanna Aizenberg & Andrew J. Black & George M. Whitesides, 1999. "Control of crystal nucleation by patterned self-assembled monolayers," Nature, Nature, vol. 398(6727), pages 495-498, April.
    4. G. Algara-Siller & O. Lehtinen & F. C. Wang & R. R. Nair & U. Kaiser & H. A. Wu & A. K. Geim & I. V. Grigorieva, 2015. "Square ice in graphene nanocapillaries," Nature, Nature, vol. 519(7544), pages 443-445, March.
    5. Dong Han Seo & Shafique Pineda & Yun Chul Woo & Ming Xie & Adrian T. Murdock & Elisa Y. M. Ang & Yalong Jiao & Myoung Jun Park & Sung Il Lim & Malcolm Lawn & Fabricio Frizera Borghi & Zhao Jun Han & S, 2018. "Anti-fouling graphene-based membranes for effective water desalination," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    6. B. Radha & A. Esfandiar & F. C. Wang & A. P. Rooney & K. Gopinadhan & A. Keerthi & A. Mishchenko & A. Janardanan & P. Blake & L. Fumagalli & M. Lozada-Hidalgo & S. Garaj & S. J. Haigh & I. V. Grigorie, 2016. "Molecular transport through capillaries made with atomic-scale precision," Nature, Nature, vol. 538(7624), pages 222-225, October.
    7. Yingchao Yang & Zhigong Song & Guangyuan Lu & Qinghua Zhang & Boyu Zhang & Bo Ni & Chao Wang & Xiaoyan Li & Lin Gu & Xiaoming Xie & Huajian Gao & Jun Lou, 2021. "Intrinsic toughening and stable crack propagation in hexagonal boron nitride," Nature, Nature, vol. 594(7861), pages 57-61, June.
    8. Shu-Wei Liu & Hua-Ping Wang & Qiang Xu & Tian-Bao Ma & Gui Yu & Chenhui Zhang & Dechao Geng & Zhiwei Yu & Shengguang Zhang & Wenzhong Wang & Yuan-Zhong Hu & Hui Wang & Jianbin Luo, 2017. "Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    9. Zheng Liu & Yongji Gong & Wu Zhou & Lulu Ma & Jingjiang Yu & Juan Carlos Idrobo & Jeil Jung & Allan H. MacDonald & Robert Vajtai & Jun Lou & Pulickel M. Ajayan, 2013. "Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    10. T. Mouterde & A. Keerthi & A. R. Poggioli & S. A. Dar & A. Siria & A. K. Geim & L. Bocquet & B. Radha, 2019. "Molecular streaming and its voltage control in ångström-scale channels," Nature, Nature, vol. 567(7746), pages 87-90, March.
    11. Runze Ma & Duanyun Cao & Chongqin Zhu & Ye Tian & Jinbo Peng & Jing Guo & Ji Chen & Xin-Zheng Li & Joseph S. Francisco & Xiao Cheng Zeng & Li-Mei Xu & En-Ge Wang & Ying Jiang, 2020. "Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice," Nature, Nature, vol. 577(7788), pages 60-63, January.
    12. Aleksey Falin & Qiran Cai & Elton J.G. Santos & Declan Scullion & Dong Qian & Rui Zhang & Zhi Yang & Shaoming Huang & Kenji Watanabe & Takashi Taniguchi & Matthew R. Barnett & Ying Chen & Rodney S. Ru, 2017. "Mechanical properties of atomically thin boron nitride and the role of interlayer interactions," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    13. Alessandro Siria & Philippe Poncharal & Anne-Laure Biance & Rémy Fulcrand & Xavier Blase & Stephen T. Purcell & Lydéric Bocquet, 2013. "Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube," Nature, Nature, vol. 494(7438), pages 455-458, February.
    14. Wuge H. Briscoe & Simon Titmuss & Fredrik Tiberg & Robert K. Thomas & Duncan J. McGillivray & Jacob Klein, 2006. "Boundary lubrication under water," Nature, Nature, vol. 444(7116), pages 191-194, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Lin & Jian Jiang & Xiao Cheng Zeng & Lei Li, 2023. "Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Nawapong Unsuree & Sorasak Phanphak & Pongthep Prajongtat & Aritsa Bunpheng & Kulpavee Jitapunkul & Pornpis Kongputhon & Pannaree Srinoi & Pawin Iamprasertkun & Wisit Hirunpinyopas, 2021. "A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives," Energies, MDPI, vol. 14(18), pages 1-38, September.
    3. Pengcheng Chen & Qiuhao Xu & Zijing Ding & Qing Chen & Jiyu Xu & Zhihai Cheng & Xiaohui Qiu & Bingkai Yuan & Sheng Meng & Nan Yao, 2023. "Identification of a common ice nucleus on hydrophilic and hydrophobic close-packed metal surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Felix Kohler & Olivier Pierre-Louis & Dag Kristian Dysthe, 2022. "Crystal growth in confinement," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Ng, Ving Onn & Hong, XiangYu & Yu, Hao & Wu, HengAn & Hung, Yew Mun, 2022. "Anomalously enhanced thermal performance of micro heat pipes coated with heterogeneous superwettable graphene nanostructures," Applied Energy, Elsevier, vol. 326(C).
    6. Weiming Wang & Qingguo Liu & Yingnan Liu & Rigong Zhang & Tian Cheng & Youguo Yan & Qianze Hu & Tingting Li, 2023. "Research Status, Existing Problems, and the Prospect of New Methods of Determining the Lower Limit of the Physical Properties of Tight Sandstone Reservoirs," Energies, MDPI, vol. 16(15), pages 1-19, July.
    7. Zhipeng Wang & Liqin Huang & Xue Dong & Tong Wu & Qi Qing & Jing Chen & Yuexiang Lu & Chao Xu, 2023. "Ion sieving in graphene oxide membrane enables efficient actinides/lanthanides separation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Cheng Chi & Gongze Liu & Meng An & Yufeng Zhang & Dongxing Song & Xin Qi & Chunyu Zhao & Zequn Wang & Yanzheng Du & Zizhen Lin & Yang Lu & He Huang & Yang Li & Chongjia Lin & Weigang Ma & Baoling Huan, 2023. "Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Youmin Hou & Prexa Shah & Vassilios Constantoudis & Evangelos Gogolides & Michael Kappl & Hans-Jürgen Butt, 2023. "A super liquid-repellent hierarchical porous membrane for enhanced membrane distillation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Tomohito Sudare & Takuro Yamaguchi & Mizuki Ueda & Hiromasa Shiiba & Hideki Tanaka & Mongkol Tipplook & Fumitaka Hayashi & Katsuya Teshima, 2022. "Critical role of water structure around interlayer ions for ion storage in layered double hydroxides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Zhihua Zhou & Yongtao Tan & Qian Yang & Achintya Bera & Zecheng Xiong & Mehmet Yagmurcukardes & Minsoo Kim & Yichao Zou & Guanghua Wang & Artem Mishchenko & Ivan Timokhin & Canbin Wang & Hao Wang & Ch, 2022. "Gas permeation through graphdiyne-based nanoporous membranes," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    12. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    13. Chen, Xi & Wang, Lu & Zhou, Ruhong & Long, Rui & Liu, Zhichun & Liu, Wei, 2023. "pH-depended behaviors of electrolytes in nanofluidic salinity gradient energy harvesting," Renewable Energy, Elsevier, vol. 211(C), pages 31-41.
    14. Xinyue Wen & Tobias Foller & Xiaoheng Jin & Tiziana Musso & Priyank Kumar & Rakesh Joshi, 2022. "Understanding water transport through graphene-based nanochannels via experimental control of slip length," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Hao-Ting Chin & Jiri Klimes & I-Fan Hu & Ding-Rui Chen & Hai-Thai Nguyen & Ting-Wei Chen & Shao-Wei Ma & Mario Hofmann & Chi-Te Liang & Ya-Ping Hsieh, 2021. "Ferroelectric 2D ice under graphene confinement," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    16. Hari Krishna Neupane & Bipin Bhattarai & Narayan Prasad Adhikari, 2022. "Tuning transport properties of B and C sites vacancy defects Graphene/h-BN heterostructures: first-principles study," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(10), pages 1-10, October.
    17. Kit-Ying Chan & Xi Shen & Jie Yang & Keng-Te Lin & Harun Venkatesan & Eunyoung Kim & Heng Zhang & Jeng-Hun Lee & Jinhong Yu & Jinglei Yang & Jang-Kyo Kim, 2022. "Scalable anisotropic cooling aerogels by additive freeze-casting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Mailis Lounasvuori & Yangyunli Sun & Tyler S. Mathis & Ljiljana Puskar & Ulrich Schade & De-En Jiang & Yury Gogotsi & Tristan Petit, 2023. "Vibrational signature of hydrated protons confined in MXene interlayers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Nathan Ronceray & Massimo Spina & Vanessa Hui Yin Chou & Chwee Teck Lim & Andre K. Geim & Slaven Garaj, 2024. "Elastocapillarity-driven 2D nano-switches enable zeptoliter-scale liquid encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Peifu Cheng & Francesco Fornasiero & Melinda L. Jue & Wonhee Ko & An-Ping Li & Juan Carlos Idrobo & Michael S. H. Boutilier & Piran R. Kidambi, 2022. "Differences in water and vapor transport through angstrom-scale pores in atomically thin membranes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32193-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.