IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14029.html
   My bibliography  Save this article

Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere

Author

Listed:
  • Shu-Wei Liu

    (State Key Laboratory of Tribology, Tsinghua University)

  • Hua-Ping Wang

    (Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences)

  • Qiang Xu

    (School of Mechanical Engineering, Beijing Institute of Technology)

  • Tian-Bao Ma

    (State Key Laboratory of Tribology, Tsinghua University)

  • Gui Yu

    (Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences)

  • Chenhui Zhang

    (State Key Laboratory of Tribology, Tsinghua University)

  • Dechao Geng

    (Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences)

  • Zhiwei Yu

    (State Key Laboratory of Tribology, Tsinghua University)

  • Shengguang Zhang

    (School of Mechanical Engineering, Beijing Institute of Technology)

  • Wenzhong Wang

    (School of Mechanical Engineering, Beijing Institute of Technology)

  • Yuan-Zhong Hu

    (State Key Laboratory of Tribology, Tsinghua University)

  • Hui Wang

    (State Key Laboratory of Tribology, Tsinghua University)

  • Jianbin Luo

    (State Key Laboratory of Tribology, Tsinghua University)

Abstract

Superlubricity of graphite and graphene has aroused increasing interest in recent years. Yet how to obtain a long-lasting superlubricity between graphene layers, under high applied normal load in ambient atmosphere still remains a challenge but is highly desirable. Here, we report a direct measurement of sliding friction between graphene and graphene, and graphene and hexagonal boron nitride (h-BN) under high contact pressures by employing graphene-coated microsphere (GMS) probe prepared by metal-catalyst-free chemical vapour deposition. The exceptionally low and robust friction coefficient of 0.003 is accomplished under local asperity contact pressure up to 1 GPa, at arbitrary relative surface rotation angles, which is insensitive to relative humidity up to 51% RH. This ultralow friction is attributed to the sustainable overall incommensurability due to the multi-asperity contact covered with randomly oriented graphene nanograins. This realization of microscale superlubricity can be extended to the sliding between a variety of two-dimensional (2D) layers.

Suggested Citation

  • Shu-Wei Liu & Hua-Ping Wang & Qiang Xu & Tian-Bao Ma & Gui Yu & Chenhui Zhang & Dechao Geng & Zhiwei Yu & Shengguang Zhang & Wenzhong Wang & Yuan-Zhong Hu & Hui Wang & Jianbin Luo, 2017. "Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14029
    DOI: 10.1038/ncomms14029
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14029
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuanyu Huang & Tengfei Li & Jin Wang & Kai Xia & Zipei Tan & Deli Peng & Xiaojian Xiang & Bin Liu & Ming Ma & Quanshui Zheng, 2023. "Robust microscale structural superlubricity between graphite and nanostructured surface," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Yajie Hu & Hongyun Ma & Mingmao Wu & Tengyu Lin & Houze Yao & Feng Liu & Huhu Cheng & Liangti Qu, 2022. "A reconfigurable and magnetically responsive assembly for dynamic solar steam generation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Dhanola, Anil & Khanna, Navneet & Gajrani, Kishor Kumar, 2022. "A critical review on liquid superlubricitive technology for attaining ultra-low friction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.