IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62267-y.html
   My bibliography  Save this article

Photonics-integrated terahertz transmission lines

Author

Listed:
  • Yazan Lampert

    (École Polytechnique Fédérale de Lausanne (EPFL)
    Center for Quantum Science and Engineering (EPFL))

  • Amirhassan Shams-Ansari

    (Harvard University
    DRS Daylight Solutions)

  • Aleksei Gaier

    (École Polytechnique Fédérale de Lausanne (EPFL)
    Center for Quantum Science and Engineering (EPFL))

  • Alessandro Tomasino

    (École Polytechnique Fédérale de Lausanne (EPFL)
    Center for Quantum Science and Engineering (EPFL))

  • Xuhui Cao

    (École Polytechnique Fédérale de Lausanne (EPFL)
    Center for Quantum Science and Engineering (EPFL))

  • Leticia Magalhaes

    (Harvard University)

  • Shima Rajabali

    (École Polytechnique Fédérale de Lausanne (EPFL)
    Center for Quantum Science and Engineering (EPFL)
    Harvard University)

  • Marko Lončar

    (Harvard University)

  • Ileana-Cristina Benea-Chelmus

    (École Polytechnique Fédérale de Lausanne (EPFL)
    Center for Quantum Science and Engineering (EPFL))

Abstract

Modern communication and sensing technologies connect the optical domain with the microwave domain. Accessing the terahertz region from 100 GHz to 10 THz is critical for providing larger bandwidths capabilities. Despite progress in integrated electronics, they lack a direct link to the optical domain, and face challenges with increasing frequencies ( > 1 THz). Electro-optic effects offer promising capabilities but are currently limited to bulk nonlinear crystals, missing out miniaturization, or to sub-terahertz bandwidths. Here, we address these challenges by realizing photonic circuits that integrate terahertz transmission lines on thin-film lithium niobate (TFLN). By providing terahertz field confinement and phase-matched interaction with optical fields, our miniaturized devices support low-noise and broad bandwidth terahertz generation and detection spanning four octaves (200 GHz to > 3 THz). By leveraging photonics’ advantages in low-loss and high-speed control, our platform achieves control over the terahertz spectrum and its amplitude, paving the way for compact and power-efficient devices with applications in telecommunications, spectroscopy, quantum electrodynamics and computing.

Suggested Citation

  • Yazan Lampert & Amirhassan Shams-Ansari & Aleksei Gaier & Alessandro Tomasino & Xuhui Cao & Leticia Magalhaes & Shima Rajabali & Marko Lončar & Ileana-Cristina Benea-Chelmus, 2025. "Photonics-integrated terahertz transmission lines," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62267-y
    DOI: 10.1038/s41467-025-62267-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62267-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62267-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yannick Salamin & Ileana-Cristina Benea-Chelmus & Yuriy Fedoryshyn & Wolfgang Heni & Delwin L. Elder & Larry R. Dalton & Jérôme Faist & Juerg Leuthold, 2019. "Compact and ultra-efficient broadband plasmonic terahertz field detector," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Dong-Chel Shin & Byung Soo Kim & Heesuk Jang & Young-Jin Kim & Seung-Woo Kim, 2023. "Photonic comb-rooted synthesis of ultra-stable terahertz frequencies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Shixing Yuan & Liao Chen & Ziwei Wang & Wentao Deng & Zhibo Hou & Chi Zhang & Yu Yu & Xiaojun Wu & Xinliang Zhang, 2021. "On-chip terahertz isolator with ultrahigh isolation ratios," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. E. Wang & J. D. Adelinia & M. Chavez-Cervantes & T. Matsuyama & M. Fechner & M. Buzzi & G. Meier & A. Cavalleri, 2023. "Superconducting nonlinear transport in optically driven high-temperature K3C60," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    5. Mohammad Samizadeh Nikoo & Elison Matioli, 2023. "Electronic metadevices for terahertz applications," Nature, Nature, vol. 614(7948), pages 451-455, February.
    6. Chengli Wang & Zihan Li & Johann Riemensberger & Grigory Lihachev & Mikhail Churaev & Wil Kao & Xinru Ji & Junyin Zhang & Terence Blesin & Alisa Davydova & Yang Chen & Kai Huang & Xi Wang & Xin Ou & T, 2024. "Lithium tantalate photonic integrated circuits for volume manufacturing," Nature, Nature, vol. 629(8013), pages 784-790, May.
    7. Ileana-Cristina Benea-Chelmus & Francesca Fabiana Settembrini & Giacomo Scalari & Jérôme Faist, 2019. "Electric field correlation measurements on the electromagnetic vacuum state," Nature, Nature, vol. 568(7751), pages 202-206, April.
    8. Mengjie Yu & David Barton III & Rebecca Cheng & Christian Reimer & Prashanta Kharel & Lingyan He & Linbo Shao & Di Zhu & Yaowen Hu & Hannah R. Grant & Leif Johansson & Yoshitomo Okawachi & Alexander L, 2022. "Integrated femtosecond pulse generator on thin-film lithium niobate," Nature, Nature, vol. 612(7939), pages 252-258, December.
    9. Markus Ludwig & Furkan Ayhan & Tobias M. Schmidt & Thibault Wildi & Thibault Voumard & Roman Blum & Zhichao Ye & Fuchuan Lei & François Wildi & Francesco Pepe & Mahmoud A. Gaafar & Ewelina Obrzud & Da, 2024. "Ultraviolet astronomical spectrograph calibration with laser frequency combs from nanophotonic lithium niobate waveguides," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Cheng Wang & Mian Zhang & Xi Chen & Maxime Bertrand & Amirhassan Shams-Ansari & Sethumadhavan Chandrasekhar & Peter Winzer & Marko Lončar, 2018. "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, Nature, vol. 562(7725), pages 101-104, October.
    11. Spencer W. Jolly & Nicholas H. Matlis & Frederike Ahr & Vincent Leroux & Timo Eichner & Anne-Laure Calendron & Hideki Ishizuki & Takunori Taira & Franz X. Kärtner & Andreas R. Maier, 2019. "Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    12. Shi Jia & Mu-Chieh Lo & Lu Zhang & Oskars Ozolins & Aleksejs Udalcovs & Deming Kong & Xiaodan Pang & Robinson Guzman & Xianbin Yu & Shilin Xiao & Sergei Popov & Jiajia Chen & Guillermo Carpintero & To, 2022. "Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexa Herter & Amirhassan Shams-Ansari & Marko Lončar & Jérôme Faist, 2025. "Thin-film lithium niobate terahertz differential field detectors with a bandwidth reaching 3 terahertz," Nature Communications, Nature, vol. 16(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Ma & Zhaoyu Cai & Chijie Zhuang & Xiangdong Liu & Zhecheng Zhang & Kewei Liu & Bo Cao & Jinliang He & Changxi Yang & Chengying Bao & Rong Zeng, 2024. "Integrated microcavity electric field sensors using Pound-Drever-Hall detection," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Xinyi Zhu & Benjamin Crockett & Connor M. L. Rowe & Hao Sun & José Azaña, 2024. "Agile manipulation of the time-frequency distribution of high-speed electromagnetic waves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Kunpeng Jia & Yuancheng Cai & Xinwei Yi & Chenye Qin & Zexing Zhao & Xiaohan Wang & Yunfeng Liu & Xiaofan Zhang & Shanshan Cheng & Xiaoshun Jiang & Chong Sheng & Yongming Huang & Jianjun Yu & Hui Liu , 2025. "Low-noise frequency synthesis and terahertz wireless communication driven by compact turnkey Kerr combs," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Alexa Herter & Amirhassan Shams-Ansari & Francesca Fabiana Settembrini & Hana K. Warner & Jérôme Faist & Marko Lončar & Ileana-Cristina Benea-Chelmus, 2023. "Terahertz waveform synthesis in integrated thin-film lithium niobate platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. James Greenberg & Brendan M. Heffernan & William F. McGrew & Keisuke Nose & Antoine Rolland, 2025. "Dual wavelength Brillouin laser terahertz source stabilized to carbonyl sulfide rotational transition," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    6. Kazuma Taki & Naoki Sekine & Kouhei Watanabe & Yuto Miyatake & Tomohiro Akazawa & Hiroya Sakumoto & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2024. "Nonvolatile optical phase shift in ferroelectric hafnium zirconium oxide," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Shahab Abdollahi & Mathieu Ladouce & Pablo Marin-Palomo & Martin Virte, 2024. "Agile THz-range spectral multiplication of frequency combs using a multi-wavelength laser," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Changhao Han & Qipeng Yang & Jun Qin & Yan Zhou & Zhao Zheng & Yunhao Zhang & Haoren Wang & Yu Sun & Junde Lu & Yimeng Wang & Zhangfeng Ge & Yichen Wu & Lei Wang & Zhixue He & Shaohua Yu & Weiwei Hu &, 2025. "Exploring 400 Gbps/λ and beyond with AI-accelerated silicon photonic slow-light technology," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    10. Chengying Bao & Zhiquan Yuan & Lue Wu & Myoung-Gyun Suh & Heming Wang & Qiang Lin & Kerry J. Vahala, 2021. "Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    11. Chenlei Li & Hongyan Yu & Tao Shu & Yueyang Zhang & Chengfeng Wen & Hengzhen Cao & Jin Xie & Hanwen Li & Zixu Xu & Gong Zhang & Zejie Yu & Huan Li & Liu Liu & Yaocheng Shi & Feng Qiu & Daoxin Dai, 2025. "PZT optical memristors," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    12. Dongliang Wang & Yikun Nie & Gaolei Hu & Hon Ki Tsang & Chaoran Huang, 2024. "Ultrafast silicon photonic reservoir computing engine delivering over 200 TOPS," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Geng-Bo Wu & Jun Yan Dai & Kam Man Shum & Ka Fai Chan & Qiang Cheng & Tie Jun Cui & Chi Hou Chan, 2023. "A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Ke Liu & Yinian Feng & Chong Han & Bo Chang & Zhi Chen & Zicheng Xu & Lingxiang Li & Bo Zhang & Yihui Wang & Qiang Xu, 2024. "High-speed 0.22 THz communication system with 84 Gbps for real-time uncompressed 8K video transmission of live events," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Mikhail Churaev & Rui Ning Wang & Annina Riedhauser & Viacheslav Snigirev & Terence Blésin & Charles Möhl & Miles H. Anderson & Anat Siddharth & Youri Popoff & Ute Drechsler & Daniele Caimi & Simon Hö, 2023. "A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Bo Zhang & Zhuo Wang & Tom Albrow-Owen & Tawfique Hasan & Zesheng Chen & Zhiying Song & Gongyuan Zhang & Hannah Joyce & Dezhi Tan & Qiangbing Guo & Cheng-wei Qiu & Zongyin Yang & Jianrong Qiu, 2025. "3D ultra-broadband optically dispersive microregions in lithium niobate," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. Chao Xiang & Joel Guo & Warren Jin & Lue Wu & Jonathan Peters & Weiqiang Xie & Lin Chang & Boqiang Shen & Heming Wang & Qi-Fan Yang & David Kinghorn & Mario Paniccia & Kerry J. Vahala & Paul A. Morton, 2021. "High-performance lasers for fully integrated silicon nitride photonics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    19. Yimeng Li & Linghan Xia & Nan Li & Shilong Tang & Yunsong Ge & Jianyu Wang & Bing Xiao & Yonghong Cheng & Lay Kee Ang & Guodong Meng, 2025. "Uncovering a widely applicable empirical formula for field emission characteristics of metallic nanotips in nanogaps," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    20. Liu Qiu & Rishabh Sahu & William Hease & Georg Arnold & Johannes M. Fink, 2023. "Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62267-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.