IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61933-5.html
   My bibliography  Save this article

Exploring 400 Gbps/λ and beyond with AI-accelerated silicon photonic slow-light technology

Author

Listed:
  • Changhao Han

    (Peking University
    University of California)

  • Qipeng Yang

    (Peking University)

  • Jun Qin

    (Beijing Information Science and Technology University)

  • Yan Zhou

    (Peking University Yangtze Delta Institute of Optoelectronics)

  • Zhao Zheng

    (Peking University)

  • Yunhao Zhang

    (Peng Cheng Laboratory)

  • Haoren Wang

    (Peng Cheng Laboratory)

  • Yu Sun

    (Beijing Information Science and Technology University)

  • Junde Lu

    (Beijing Information Science and Technology University)

  • Yimeng Wang

    (Peking University)

  • Zhangfeng Ge

    (Peking University Yangtze Delta Institute of Optoelectronics)

  • Yichen Wu

    (Peking University)

  • Lei Wang

    (Peng Cheng Laboratory)

  • Zhixue He

    (Peng Cheng Laboratory)

  • Shaohua Yu

    (Peking University
    Peng Cheng Laboratory)

  • Weiwei Hu

    (Peking University)

  • Chao Peng

    (Peking University
    Peng Cheng Laboratory
    Peking University)

  • Haowen Shu

    (Peking University
    Peking University)

  • John E. Bowers

    (University of California)

  • Xingjun Wang

    (Peking University
    Peking University Yangtze Delta Institute of Optoelectronics
    Peng Cheng Laboratory
    Peking University)

Abstract

Silicon photonics is a promising platform for the extensive deployment of optical interconnections, with the feasibility of low-cost and large-scale production at the wafer level. However, the intrinsic efficiency-bandwidth trade-off and nonlinear distortions of pure silicon modulators result in the transmission limits, which raises concerns about the prospects of silicon photonics for ultrahigh-speed scenarios. Here, we propose an artificial intelligence (AI)-accelerated silicon photonic slow-light technology to explore 400 Gbps/λ and beyond transmission. By utilizing the artificial neural network, we achieve a data capacity of 3.2 Tbps based on an 8-channel wavelength-division-multiplexed silicon slow-light modulator chip with a thermal-insensitive structure, leading to an on-chip data-rate density of 1.6 Tb/s/mm2. The demonstration of single-lane 400 Gbps PAM-4 transmission reveals the great potential of standard silicon photonic platforms for next-generation optical interfaces. Our approach increases the transmission rate of silicon photonics significantly and is expected to construct a self-optimizing positive feedback loop with computing centers through AI technology.

Suggested Citation

  • Changhao Han & Qipeng Yang & Jun Qin & Yan Zhou & Zhao Zheng & Yunhao Zhang & Haoren Wang & Yu Sun & Junde Lu & Yimeng Wang & Zhangfeng Ge & Yichen Wu & Lei Wang & Zhixue He & Shaohua Yu & Weiwei Hu &, 2025. "Exploring 400 Gbps/λ and beyond with AI-accelerated silicon photonic slow-light technology," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61933-5
    DOI: 10.1038/s41467-025-61933-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61933-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61933-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Ansheng Liu & Richard Jones & Ling Liao & Dean Samara-Rubio & Doron Rubin & Oded Cohen & Remus Nicolaescu & Mario Paniccia, 2004. "A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor," Nature, Nature, vol. 427(6975), pages 615-618, February.
    3. Jicheng Jin & Xuefan Yin & Liangfu Ni & Marin Soljačić & Bo Zhen & Chao Peng, 2019. "Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering," Nature, Nature, vol. 574(7779), pages 501-504, October.
    4. Amir H. Atabaki & Sajjad Moazeni & Fabio Pavanello & Hayk Gevorgyan & Jelena Notaros & Luca Alloatti & Mark T. Wade & Chen Sun & Seth A. Kruger & Huaiyu Meng & Kenaish Al Qubaisi & Imbert Wang & Bohan, 2018. "Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip," Nature, Nature, vol. 556(7701), pages 349-354, April.
    5. Guo-Wei Lu & Jianxun Hong & Feng Qiu & Andrew M. Spring & Tsubasa Kashino & Juro Oshima & Masa-aki Ozawa & Hideyuki Nawata & Shiyoshi Yokoyama, 2020. "Author Correction: High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    6. Haowen Shu & Lin Chang & Yuansheng Tao & Bitao Shen & Weiqiang Xie & Ming Jin & Andrew Netherton & Zihan Tao & Xuguang Zhang & Ruixuan Chen & Bowen Bai & Jun Qin & Shaohua Yu & Xingjun Wang & John E. , 2022. "Microcomb-driven silicon photonic systems," Nature, Nature, vol. 605(7910), pages 457-463, May.
    7. Qianfan Xu & Bradley Schmidt & Sameer Pradhan & Michal Lipson, 2005. "Micrometre-scale silicon electro-optic modulator," Nature, Nature, vol. 435(7040), pages 325-327, May.
    8. Christian Haffner & Daniel Chelladurai & Yuriy Fedoryshyn & Arne Josten & Benedikt Baeuerle & Wolfgang Heni & Tatsuhiko Watanabe & Tong Cui & Bojun Cheng & Soham Saha & Delwin L. Elder & Larry. R. Dal, 2018. "Low-loss plasmon-assisted electro-optic modulator," Nature, Nature, vol. 556(7702), pages 483-486, April.
    9. Guo-Wei Lu & Jianxun Hong & Feng Qiu & Andrew M. Spring & Tsubasa Kashino & Juro Oshima & Masa-aki Ozawa & Hideyuki Nawata & Shiyoshi Yokoyama, 2020. "High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    10. Amir H. Atabaki & Sajjad Moazeni & Fabio Pavanello & Hayk Gevorgyan & Jelena Notaros & Luca Alloatti & Mark T. Wade & Chen Sun & Seth A. Kruger & Huaiyu Meng & Kenaish Al Qubaisi & Imbert Wang & Bohan, 2018. "Publisher Correction: Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip," Nature, Nature, vol. 560(7716), pages 4-4, August.
    11. Yurii A. Vlasov & Martin O'Boyle & Hendrik F. Hamann & Sharee J. McNab, 2005. "Active control of slow light on a chip with photonic crystal waveguides," Nature, Nature, vol. 438(7064), pages 65-69, November.
    12. Cheng Wang & Mian Zhang & Xi Chen & Maxime Bertrand & Amirhassan Shams-Ansari & Sethumadhavan Chandrasekhar & Peter Winzer & Marko Lončar, 2018. "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, Nature, vol. 562(7725), pages 101-104, October.
    13. Sudip Shekhar & Wim Bogaerts & Lukas Chrostowski & John E. Bowers & Michael Hochberg & Richard Soref & Bhavin J. Shastri, 2024. "Roadmapping the next generation of silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Ileana-Cristina Benea-Chelmus & Sydney Mason & Maryna L. Meretska & Delwin L. Elder & Dmitry Kazakov & Amirhassan Shams-Ansari & Larry R. Dalton & Federico Capasso, 2022. "Gigahertz free-space electro-optic modulators based on Mie resonances," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Shihan Hong & Jiachen Wu & Yiwei Xie & Xiyuan Ke & Huan Li & Linyan Lyv & Yingying Peng & Qingrui Yao & Yaocheng Shi & Ke Wang & Leimeng Zhuang & Pan Wang & Daoxin Dai, 2025. "Versatile parallel signal processing with a scalable silicon photonic chip," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Xiaomin Lv & Binbin Nie & Chen Yang & Rui Ma & Ze Wang & Yanwu Liu & Xing Jin & Kaixuan Zhu & Zhenyu Chen & Du Qian & Guanyu Zhang & Guowei Lv & Qihuang Gong & Fang Bo & Qi-Fan Yang, 2025. "Broadband microwave-rate dark pulse microcombs in dissipation-engineered LiNbO3 microresonators," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    6. Tianhua Ren & Andrés Granados del Águila & Zhaolong Chen & Qianhui Xu & Xuehong Zhou & Rui Duan & Magdalena Grzeszczyk & Xiao Gong & Kenji Watanabe & Takashi Taniguchi & Kostya S. Novoselov & Maciej K, 2025. "Van der Waals photonic integrated circuit with coherent light generation," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    7. Seong Won Lee & Jong Seok Lee & Woo Hun Choi & Daegwang Choi & Su-Hyun Gong, 2024. "Ultra-compact exciton polariton modulator based on van der Waals semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Yunping Bai & Yifu Xu & Shifan Chen & Xiaotian Zhu & Shuai Wang & Sirui Huang & Yuhang Song & Yixuan Zheng & Zhihui Liu & Sim Tan & Roberto Morandotti & Sai T. Chu & Brent E. Little & David J. Moss & , 2025. "TOPS-speed complex-valued convolutional accelerator for feature extraction and inference," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    9. Qinci Wu & Jun Qian & Yuechen Wang & Luwen Xing & Ziyi Wei & Xin Gao & Yurui Li & Zhongfan Liu & Hongtao Liu & Haowen Shu & Jianbo Yin & Xingjun Wang & Hailin Peng, 2024. "Waveguide-integrated twisted bilayer graphene photodetectors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Sizhe Xing & Aolong Sun & Chengxi Wang & Yizhi Wang & Boyu Dong & Junhui Hu & Xuyu Deng & An Yan & Yinjun Liu & Fangchen Hu & Zhongya Li & Ouhan Huang & Junhao Zhao & Yingjun Zhou & Ziwei Li & Jianyan, 2025. "Seamless optical cloud computing across edge-metro network for generative AI," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    12. Lucas M. Cohen & Kaiyi Wu & Karthik V. Myilswamy & Saleha Fatema & Navin B. Lingaraju & Andrew M. Weiner, 2024. "Silicon photonic microresonator-based high-resolution line-by-line pulse shaping," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Chenlei Li & Hongyan Yu & Tao Shu & Yueyang Zhang & Chengfeng Wen & Hengzhen Cao & Jin Xie & Hanwen Li & Zixu Xu & Gong Zhang & Zejie Yu & Huan Li & Liu Liu & Yaocheng Shi & Feng Qiu & Daoxin Dai, 2025. "PZT optical memristors," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    14. Mikhail Churaev & Rui Ning Wang & Annina Riedhauser & Viacheslav Snigirev & Terence Blésin & Charles Möhl & Miles H. Anderson & Anat Siddharth & Youri Popoff & Ute Drechsler & Daniele Caimi & Simon Hö, 2023. "A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Emma Lomonte & Martin A. Wolff & Fabian Beutel & Simone Ferrari & Carsten Schuck & Wolfram H. P. Pernice & Francesco Lenzini, 2021. "Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    17. Dmitry Kazakov & Theodore P. Letsou & Maximilian Beiser & Yiyang Zhi & Nikola Opačak & Marco Piccardo & Benedikt Schwarz & Federico Capasso, 2024. "Active mid-infrared ring resonators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Chuangchuang Wei & Hanke Feng & Kaixuan Ye & Maarten Eijkel & Yvan Klaver & Zhaoxi Chen & Akshay Keloth & Cheng Wang & David Marpaung, 2025. "Programmable multifunctional integrated microwave photonic circuit on thin-film lithium niobate," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    19. Wen Zhou & Bowei Dong & Nikolaos Farmakidis & Xuan Li & Nathan Youngblood & Kairan Huang & Yuhan He & C. David Wright & Wolfram H. P. Pernice & Harish Bhaskaran, 2023. "In-memory photonic dot-product engine with electrically programmable weight banks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Zheng Li & Jin Xue & Marc Cea & Jaehwan Kim & Hao Nong & Daniel Chong & Khee Yong Lim & Elgin Quek & Rajeev J. Ram, 2023. "A sub-wavelength Si LED integrated in a CMOS platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61933-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.