IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62078-1.html
   My bibliography  Save this article

Copper ion diffusion by solid solution treatment advancing GeTe-based thermoelectrics

Author

Listed:
  • Yongqi Chen

    (Queensland University of Technology)

  • Meng Li

    (Queensland University of Technology)

  • Xiaodong Wang

    (Queensland University of Technology)

  • Wenyi Chen

    (Queensland University of Technology)

  • Siqi Liu

    (Queensland University of Technology)

  • Min Zhang

    (Queensland University of Technology)

  • Wanyu Lyu

    (Queensland University of Technology)

  • Nanhai Li

    (Queensland University of Technology)

  • Han Gao

    (Queensland University of Technology
    Zhengzhou University)

  • Weidi Liu

    (Queensland University of Technology)

  • Xiao-Lei Shi

    (Queensland University of Technology)

  • Zhi-Gang Chen

    (Queensland University of Technology)

Abstract

Coinage metals Cu and Ag are widely reckoned as effective dopants in thermoelectric materials due to their ability to optimise carrier concentration while preserving high carrier mobility, attributed to their inherent dynamic features. Traditionally, Cu/Ag ions are introduced through eutectic reactions, which inevitably result in interstitial doping. Here, we develop an innovative solid solution doping strategy that enables targeted doping, whereby Cu ions exclusively occupy host lattice sites rather than interstitial sites. By combining first-principles calculations with in-situ experiments, we demonstrate that this targeted doping approach relies on ion diffusion and induces lattice renormalisation, effectively reducing lattice defects and suppressing hole concentration. Consequently, the 1 at.% Cu doped Ge0.85Sb0.10Te sample exhibits an exceptional figure-of-merit of 2.3 at 775 K along with a desirable average value of 1.4 scoping 300 to 775 K. The power density of the corresponding single-leg thermoelectric module is 2.23 W·cm−2 under a temperature difference of 475 K. This work not only explains the kinetics behind dynamic doping behaviours, but also provide an original method to achieve high-quality functional materials with less lattice defects and a high carrier mobility.

Suggested Citation

  • Yongqi Chen & Meng Li & Xiaodong Wang & Wenyi Chen & Siqi Liu & Min Zhang & Wanyu Lyu & Nanhai Li & Han Gao & Weidi Liu & Xiao-Lei Shi & Zhi-Gang Chen, 2025. "Copper ion diffusion by solid solution treatment advancing GeTe-based thermoelectrics," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62078-1
    DOI: 10.1038/s41467-025-62078-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62078-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62078-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yilin Jiang & Jinfeng Dong & Hua-Lu Zhuang & Jincheng Yu & Bin Su & Hezhang Li & Jun Pei & Fu-Hua Sun & Min Zhou & Haihua Hu & Jing-Wei Li & Zhanran Han & Bo-Ping Zhang & Takao Mori & Jing-Feng Li, 2022. "Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Yanzhong Pei & Xiaoya Shi & Aaron LaLonde & Heng Wang & Lidong Chen & G. Jeffrey Snyder, 2011. "Convergence of electronic bands for high performance bulk thermoelectrics," Nature, Nature, vol. 473(7345), pages 66-69, May.
    3. Kanishka Biswas & Jiaqing He & Ivan D. Blum & Chun-I Wu & Timothy P. Hogan & David N. Seidman & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2012. "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, Nature, vol. 489(7416), pages 414-418, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing-Wei Li & Zhijia Han & Jincheng Yu & Hua-Lu Zhuang & Haihua Hu & Bin Su & Hezhang Li & Yilin Jiang & Lu Chen & Weishu Liu & Qiang Zheng & Jing-Feng Li, 2023. "Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Yingcai Zhu & Dongyang Wang & Tao Hong & Lei Hu & Toshiaki Ina & Shaoping Zhan & Bingchao Qin & Haonan Shi & Lizhong Su & Xiang Gao & Li-Dong Zhao, 2022. "Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Yilin Jiang & Jinfeng Dong & Hua-Lu Zhuang & Jincheng Yu & Bin Su & Hezhang Li & Jun Pei & Fu-Hua Sun & Min Zhou & Haihua Hu & Jing-Wei Li & Zhanran Han & Bo-Ping Zhang & Takao Mori & Jing-Feng Li, 2022. "Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yong Yu & Xiao Xu & Yan Wang & Baohai Jia & Shan Huang & Xiaobin Qiang & Bin Zhu & Peijian Lin & Binbin Jiang & Shixuan Liu & Xia Qi & Kefan Pan & Di Wu & Haizhou Lu & Michel Bosman & Stephen J. Penny, 2022. "Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Decheng An & Senhao Zhang & Xin Zhai & Wutao Yang & Riga Wu & Huaide Zhang & Wenhao Fan & Wenxian Wang & Shaoping Chen & Oana Cojocaru-Mirédin & Xian-Ming Zhang & Matthias Wuttig & Yuan Yu, 2024. "Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Zhifang Zhou & Yi Huang & Bin Wei & Yueyang Yang & Dehong Yu & Yunpeng Zheng & Dongsheng He & Wenyu Zhang & Mingchu Zou & Jin-Le Lan & Jiaqing He & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Compositing effects for high thermoelectric performance of Cu2Se-based materials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Guodong Tang & Yuqi Liu & Xiaoyu Yang & Yongsheng Zhang & Pengfei Nan & Pan Ying & Yaru Gong & Xuemei Zhang & Binghui Ge & Nan Lin & Xuefei Miao & Kun Song & Carl-Friedrich Schön & Matteo Cagnoni & Da, 2024. "Interplay between metavalent bonds and dopant orbitals enables the design of SnTe thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Song Lv & Zuoqin Qian & Dengyun Hu & Xiaoyuan Li & Wei He, 2020. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, MDPI, vol. 13(12), pages 1-24, June.
    10. Dianta Ginting & Chan-Chieh Lin & Jong-Soo Rhyee, 2019. "Synergetic Approach for Superior Thermoelectric Performance in PbTe-PbSe-PbS Quaternary Alloys and Composites," Energies, MDPI, vol. 13(1), pages 1-29, December.
    11. Eom, Yoomin & Wijethunge, Dimuthu & Park, Hwanjoo & Park, Sang Hyun & Kim, Woochul, 2017. "Flexible thermoelectric power generation system based on rigid inorganic bulk materials," Applied Energy, Elsevier, vol. 206(C), pages 649-656.
    12. Bingchao Qin & Dongyang Wang & Tao Hong & Yuping Wang & Dongrui Liu & Ziyuan Wang & Xiang Gao & Zhen-Hua Ge & Li-Dong Zhao, 2023. "High thermoelectric efficiency realized in SnSe crystals via structural modulation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Nie, Xianhua & Xue, Juan & Zhao, Li & Deng, Shuai & Xiong, Hanping, 2024. "New insight of thermodynamic cycle in thermoelectric power generation analyses: Literature review and perspectives," Energy, Elsevier, vol. 292(C).
    14. Ni, Dan & Song, Haijun & Chen, Yuanxun & Cai, Kefeng, 2019. "Free-standing highly conducting PEDOT films for flexible thermoelectric generator," Energy, Elsevier, vol. 170(C), pages 53-61.
    15. Ming Liu & Muchun Guo & Haiyan Lyu & Yingda Lai & Yuke Zhu & Fengkai Guo & Yueyang Yang & Kuai Yu & Xingyan Dong & Zihang Liu & Wei Cai & Matthias Wuttig & Yuan Yu & Jiehe Sui, 2024. "Doping strategy in metavalently bonded materials for advancing thermoelectric performance," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Haonan Shi & Yi Wen & Shulin Bai & Cheng Chang & Lizhong Su & Tian Gao & Shibo Liu & Dongrui Liu & Bingchao Qin & Yongxin Qin & Huiqiang Liang & Xin Qian & Zhenghao Hou & Xiang Gao & Tianhang Zhou & Q, 2025. "Crystal symmetry modification enables high-ranged in-plane thermoelectric performance in n-type SnSe crystals," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Qian Deng & Xiao-Lei Shi & Meng Li & Xiaobo Tan & Ruiheng Li & Chen Wang & Yue Chen & Hongliang Dong & Ran Ang & Zhi-Gang Chen, 2025. "Lattice defect engineering advances n-type PbSe thermoelectrics," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    18. Hangtian Zhu & Wenjie Li & Amin Nozariasbmarz & Na Liu & Yu Zhang & Shashank Priya & Bed Poudel, 2023. "Half-Heusler alloys as emerging high power density thermoelectric cooling materials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Pascal Boulet & Marie-Christine Record, 2020. "Theoretical Investigations of the BaRh 2 Ge 4 X 6 (X = S, Se, Te) Compounds," Energies, MDPI, vol. 13(23), pages 1-21, December.
    20. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62078-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.