IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61410-z.html
   My bibliography  Save this article

Structural dynamics of melting and glass formation in a two-dimensional hybrid perovskite

Author

Listed:
  • Chumei Ye

    (University of Cambridge
    University of Cambridge)

  • Lauren N. McHugh

    (University of Liverpool)

  • Pierre Florian

    (CEMHTI UPR3079 University of Orléans)

  • Ruohan Yu

    (Wuhan University of Technology)

  • Celia Castillo-Blas

    (University of Cambridge)

  • Celia Chen

    (University of Cambridge
    University of Cambridge)

  • Arad Lang

    (University of Cambridge)

  • Yuhang Dai

    (Wuhan University of Technology
    University of Oxford)

  • Jingwei Hou

    (The University of Queensland
    ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide)

  • David A. Keen

    (ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus)

  • Siân E. Dutton

    (University of Cambridge)

  • Thomas D. Bennett

    (University of Cambridge
    University of Canterbury)

Abstract

Hybrid organic-inorganic perovskites (HOIPs) have garnered significant attention for their crystalline properties, yet recent findings reveal that they can also form liquid and glassy phases, offering an alternative platform for understanding non-crystalline materials. In this study, we present a detailed investigation into the structural dynamics of the melting and glass formation process of a two-dimensional (2D) HOIP, (S−(−)−1-(1−naphthyl)ethylammonium)2PbBr4. Compared to its crystalline counterpart, the glass exhibits superior mechanical properties, including higher Young’s modulus and hardness. Our structural studies reveal that the liquid and glass formed from the 2D HOIP exhibit network-forming behaviour, featuring limited short-range order within individual octahedra, partial retention of metal-halide-metal connectivity between neighbouring octahedra, and residual structural correlations mediated by organic cations. We then combine in situ variable-temperature X-ray total scattering experiments, terahertz far-infrared absorption spectroscopy and solid-state nuclear magnetic resonance techniques to study the melting mechanism and the nature of the HOIP liquid obtained. Our results deepen the understanding of the structural evolution and property relationships in HOIP glasses, providing a foundation for their potential applications in advanced phase-change material technologies.

Suggested Citation

  • Chumei Ye & Lauren N. McHugh & Pierre Florian & Ruohan Yu & Celia Castillo-Blas & Celia Chen & Arad Lang & Yuhang Dai & Jingwei Hou & David A. Keen & Siân E. Dutton & Thomas D. Bennett, 2025. "Structural dynamics of melting and glass formation in a two-dimensional hybrid perovskite," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61410-z
    DOI: 10.1038/s41467-025-61410-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61410-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61410-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinyoung Seo & Ryan D. McGillicuddy & Adam H. Slavney & Selena Zhang & Rahil Ukani & Andrey A. Yakovenko & Shao-Liang Zheng & Jarad A. Mason, 2022. "Colossal barocaloric effects with ultralow hysteresis in two-dimensional metal–halide perovskites," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Manoj K. Jana & Ruyi Song & Haoliang Liu & Dipak Raj Khanal & Svenja M. Janke & Rundong Zhao & Chi Liu & Z. Valy Vardeny & Volker Blum & David B. Mitzi, 2020. "Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Xiaolei Yang & Xingwang Zhang & Jinxiang Deng & Zema Chu & Qi Jiang & Junhua Meng & Pengyang Wang & Liuqi Zhang & Zhigang Yin & Jingbi You, 2018. "Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Wen-Long Xue & Pascal Kolodzeiski & Hanna Aucharova & Suresh Vasa & Athanasios Koutsianos & Roman Pallach & Jianbo Song & Louis Frentzel-Beyme & Rasmus Linser & Sebastian Henke, 2024. "Highly porous metal-organic framework liquids and glasses via a solvent-assisted linker exchange strategy of ZIF-8," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Kaori Ito & Cornelius T. Moynihan & C. Austen Angell, 1999. "Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water," Nature, Nature, vol. 398(6727), pages 492-495, April.
    6. Thomas D. Bennett & Jin-Chong Tan & Yuanzheng Yue & Emma Baxter & Caterina Ducati & Nick J. Terrill & Hamish H. -M. Yeung & Zhongfu Zhou & Wenlin Chen & Sebastian Henke & Anthony K. Cheetham & G. Nevi, 2015. "Hybrid glasses from strong and fragile metal-organic framework liquids," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    7. Philip S. Salmon & Richard A. Martin & Philip E. Mason & Gabriel J. Cuello, 2005. "Topological versus chemical ordering in network glasses at intermediate and extended length scales," Nature, Nature, vol. 435(7038), pages 75-78, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Long Xue & Pascal Kolodzeiski & Hanna Aucharova & Suresh Vasa & Athanasios Koutsianos & Roman Pallach & Jianbo Song & Louis Frentzel-Beyme & Rasmus Linser & Sebastian Henke, 2024. "Highly porous metal-organic framework liquids and glasses via a solvent-assisted linker exchange strategy of ZIF-8," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jiawei Chen & Xiangyu Liu & Bo Cai & Yuanzhuang Cheng & Hao Wen & Danlei Zhu & Yaonan Xiong & Linjie Dai & Xinghua Yan & Baixu Xiang & Xiyu Luo & Wenjing Feng & Jiuyao Du & Shuyue Dong & Qingsong Shan, 2025. "Lattice-matched molecular-anchor design for high-performance perovskite quantum dot light-emitting diodes," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Adam F. Sapnik & Irene Bechis & Alice M. Bumstead & Timothy Johnson & Philip A. Chater & David A. Keen & Kim E. Jelfs & Thomas D. Bennett, 2022. "Multivariate analysis of disorder in metal–organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Shunran Li & Xian Xu & Conrad A. Kocoj & Chenyu Zhou & Yanyan Li & Du Chen & Joseph A. Bennett & Sunhao Liu & Lina Quan & Suchismita Sarker & Mingzhao Liu & Diana Y. Qiu & Peijun Guo, 2024. "Large exchange-driven intrinsic circular dichroism of a chiral 2D hybrid perovskite," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Ashish Jain & Jean-Luc Bégin & Paul Corkum & Ebrahim Karimi & Thomas Brabec & Ravi Bhardwaj, 2024. "Intrinsic dichroism in amorphous and crystalline solids with helical light," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Luis León-Alcaide & Lucía Martínez-Goyeneche & Michele Sessolo & Bruno J. C. Vieira & João C. Waerenborgh & J. Alberto Rodríguez-Velamazán & Oscar Fabelo & Matthew J. Cliffe & David A. Keen & Guiller, 2025. "Direct synthesis of an iron metal-organic framework antiferromagnetic glass," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Zaneta Wojnarowska & Shinian Cheng & Beibei Yao & Malgorzata Swadzba-Kwasny & Shannon McLaughlin & Anne McGrogan & Yoan Delavoux & Marian Paluch, 2022. "Pressure-induced liquid-liquid transition in a family of ionic materials," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Junqing Xu & Kejun Li & Uyen N. Huynh & Mayada Fadel & Jinsong Huang & Ravishankar Sundararaman & Valy Vardeny & Yuan Ping, 2024. "How spin relaxes and dephases in bulk halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Shichun Li & Chao Ma & Jingwei Hou & Shuwen Yu & Aibing Chen & Juan Du & Philip A. Chater & Dean S. Keeble & Zhihua Qiao & Chongli Zhong & David A. Keen & Yu Liu & Thomas D. Bennett, 2025. "Highly porous metal-organic framework glass design and application for gas separation membranes," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    10. Jaehyun Son & Sunihl Ma & Young-Kwang Jung & Jeiwan Tan & Gyumin Jang & Hyungsoo Lee & Chan Uk Lee & Junwoo Lee & Subin Moon & Wooyong Jeong & Aron Walsh & Jooho Moon, 2023. "Unraveling chirality transfer mechanism by structural isomer-derived hydrogen bonding interaction in 2D chiral perovskite," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Fushuai Wang & Quanzi Yuan & Xinghua Shi, 2025. "Instability-induced crystal self-assembly in film-substrate system for the construction of large-area micro- and nano-chiral structures," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    12. Rui Zhou & Laizhi Sui & Xinbao Liu & Kaikai Liu & Dengyang Guo & Wenbo Zhao & Shiyu Song & Chaofan Lv & Shu Chen & Tianci Jiang & Zhe Cheng & Sheng Meng & Chongxin Shan, 2023. "Multiphoton excited singlet/triplet mixed self-trapped exciton emission," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Wen-Long Xue & Guo-Qiang Li & Hui Chen & Yu-Chen Han & Li Feng & Lu Wang & Xiao-Ling Gu & Si-Yuan Hu & Yu-Heng Deng & Lei Tan & Martin T. Dove & Wei Li & Jiangwei Zhang & Hongliang Dong & Zhiqiang Che, 2024. "Melt-quenched glass formation of a family of metal-carboxylate frameworks," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Li, Qingmeng & Han, Ning & Chai, Jiali & Zhang, Wei & Du, Jiakai & Tian, Hao & Liu, Hao & Wang, Guoxiu & Tang, Bohejin, 2023. "Strategies to improve metal-organic frameworks and their derived oxides as lithium storage anode materials," Energy, Elsevier, vol. 282(C).
    15. Bogdan Dryzhakov & Yipeng Tang & Jong Keum & Haile Ambaye & Jinwoo Kim & Tae-Woo Lee & Valeria Lauter & Bin Hu, 2025. "Spin switchable optical phenomena in Rashba band structures through intersystem crossing in momentum space in solution-processing 2D-superlattice perovskite film," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    16. Shreetu Shrestha & Mingxing Li & Suji Park & Xiao Tong & Donald DiMarzio & Mircea Cotlet, 2023. "Room temperature valley polarization via spin selective charge transfer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Sunihl Ma & Young-Kwang Jung & Jihoon Ahn & Jihoon Kyhm & Jeiwan Tan & Hyungsoo Lee & Gyumin Jang & Chan Uk Lee & Aron Walsh & Jooho Moon, 2022. "Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Oksana Smirnova & Roman Sajzew & Sarah Jasmin Finkelmeyer & Teymur Asadov & Sayan Chattopadhyay & Torsten Wieduwilt & Aaron Reupert & Martin Presselt & Alexander Knebel & Lothar Wondraczek, 2024. "Micro-optical elements from optical-quality ZIF-62 hybrid glasses by hot imprinting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Louis Frentzel-Beyme & Pascal Kolodzeiski & Jan-Benedikt Weiß & Andreas Schneemann & Sebastian Henke, 2022. "Quantification of gas-accessible microporosity in metal-organic framework glasses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Akio Ishii & Ju Li & Shigenobu Ogata, 2013. "“Conjugate Channeling” Effect in Dislocation Core Diffusion: Carbon Transport in Dislocated BCC Iron," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-7, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61410-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.