IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57834-2.html
   My bibliography  Save this article

Spin switchable optical phenomena in Rashba band structures through intersystem crossing in momentum space in solution-processing 2D-superlattice perovskite film

Author

Listed:
  • Bogdan Dryzhakov

    (University of Tennessee)

  • Yipeng Tang

    (University of Tennessee)

  • Jong Keum

    (Oak Ridge National Laboratory
    Center for Nanophase Materials Sciences)

  • Haile Ambaye

    (Oak Ridge National Laboratory)

  • Jinwoo Kim

    (Seoul National University)

  • Tae-Woo Lee

    (Seoul National University)

  • Valeria Lauter

    (Oak Ridge National Laboratory)

  • Bin Hu

    (University of Tennessee)

Abstract

Spin-switchable phenomena are a critical element for the development of spintronic and chiroptic devices. Herein we combine a 2D-superlattice perovskite (4,4-DFPD2PbI4) film with a ferromagnetic cobalt (Co) layer to form a multiferroic perovskite/Co interface, and demonstrate spin-switchable circularly polarized luminescence (CPL) between right-handed σ+ and left-handed σ− polarizations. When the ferromagnetic spins of Co at the Co/perovskite interface are altered between positive and negative magnetic field directions, the CPL from the 2D-superlattice perovskite switches from σ+ to σ− polarization. The magnetic field effects present a unique method to confirm that CPL is generated by the circular-orbital momentum of light-emitting excitons within Rashba band structures, eliminating artifacts involving structural birefringence. Our polarized neutron reflectometry measurements confirm a super long-range spin-orbit interaction occurring in the 2D-superlattice perovskite films. The temperature dependence of spin-switchable phenomenon indicates an extraordinarily long orbital polarization lifetime, reaching microseconds at room temperature and milliseconds at 5 K.

Suggested Citation

  • Bogdan Dryzhakov & Yipeng Tang & Jong Keum & Haile Ambaye & Jinwoo Kim & Tae-Woo Lee & Valeria Lauter & Bin Hu, 2025. "Spin switchable optical phenomena in Rashba band structures through intersystem crossing in momentum space in solution-processing 2D-superlattice perovskite film," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57834-2
    DOI: 10.1038/s41467-025-57834-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57834-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57834-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57834-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.