IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60313-3.html
   My bibliography  Save this article

In situ and real-time ultrafast spectroscopy of photoinduced reactions in perovskite nanomaterials

Author

Listed:
  • Gi Rim Han

    (Institute for Basic Science)

  • Mai Ngoc An

    (Institute for Basic Science
    Quantum Science Ltd.)

  • Hyunmin Jang

    (Institute for Basic Science
    Korea University)

  • Noh Soo Han

    (Institute for Basic Science
    Korea Research Institute of Standards and Science)

  • JunWoo Kim

    (Institute for Basic Science
    Chungbuk National University)

  • Kwang Seob Jeong

    (Institute for Basic Science
    Korea University)

  • Tai Hyun Yoon

    (Institute for Basic Science
    Korea University)

  • Minhaeng Cho

    (Institute for Basic Science
    Korea University)

Abstract

By employing two synchronized mode-locked femtosecond lasers and interferometric detection of the pump-probe spectra—referred to as asynchronous and interferometric transient absorption—we have developed a method for broad dynamic range and rapid data acquisition. Using asynchronous and interferometric transient absorption, we examined photochemical changes during femtosecond pump-probe experiments on all-inorganic cesium lead halide nanomaterials. The laser pulse train facilitates photoreactions while allowing real-time observation of charge carrier dynamics. In perovskite nanocrystals undergoing photo-substitution of halide anions, transient absorption spectra showed increasing bandgap energy and faster relaxation dynamics as the Cl/Br ratio increased. For colloidal perovskite nanoplatelets, continuous observation revealed both spectral and kinetic changes during the light-induced coalescence of nanoplatelets, by analyzing temporal segments. This integrated technique not only deepens understanding of exciton dynamics and environmental influences in perovskite nanomaterials but also establishes asynchronous and interferometric transient absorption as a transformative tool for real-time observation of photochemical dynamics.

Suggested Citation

  • Gi Rim Han & Mai Ngoc An & Hyunmin Jang & Noh Soo Han & JunWoo Kim & Kwang Seob Jeong & Tai Hyun Yoon & Minhaeng Cho, 2025. "In situ and real-time ultrafast spectroscopy of photoinduced reactions in perovskite nanomaterials," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60313-3
    DOI: 10.1038/s41467-025-60313-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60313-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60313-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. JunWoo Kim & Jonggu Jeon & Tai Hyun Yoon & Minhaeng Cho, 2020. "Two-dimensional electronic spectroscopy of bacteriochlorophyll a with synchronized dual mode-locked lasers," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Michael A. Becker & Roman Vaxenburg & Georgian Nedelcu & Peter C. Sercel & Andrew Shabaev & Michael J. Mehl & John G. Michopoulos & Samuel G. Lambrakos & Noam Bernstein & John L. Lyons & Thilo Stöferl, 2018. "Bright triplet excitons in caesium lead halide perovskites," Nature, Nature, vol. 553(7687), pages 189-193, January.
    3. Pavel Malý & Julian Lüttig & Peter A. Rose & Arthur Turkin & Christoph Lambert & Jacob J. Krich & Tobias Brixner, 2023. "Separating single- from multi-particle dynamics in nonlinear spectroscopy," Nature, Nature, vol. 616(7956), pages 280-287, April.
    4. Jianhui Fu & Qiang Xu & Guifang Han & Bo Wu & Cheng Hon Alfred Huan & Meng Lee Leek & Tze Chien Sum, 2017. "Hot carrier cooling mechanisms in halide perovskites," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    5. Nam Joong Jeon & Jun Hong Noh & Woon Seok Yang & Young Chan Kim & Seungchan Ryu & Jangwon Seo & Sang Il Seok, 2015. "Compositional engineering of perovskite materials for high-performance solar cells," Nature, Nature, vol. 517(7535), pages 476-480, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daria D. Blach & Victoria A. Lumsargis-Roth & Chern Chuang & Daniel E. Clark & Shibin Deng & Olivia F. Williams & Christina W. Li & Jianshu Cao & Libai Huang, 2025. "Environment-assisted quantum transport of excitons in perovskite nanocrystal superlattices," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Junzhi Ye & Navendu Mondal & Ben P. Carwithen & Yunwei Zhang & Linjie Dai & Xiang-Bing Fan & Jian Mao & Zhiqiang Cui & Pratyush Ghosh & Clara Otero‐Martínez & Lars Turnhout & Yi-Teng Huang & Zhongzhen, 2024. "Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Gabriele Rainò & Nuri Yazdani & Simon C. Boehme & Manuel Kober-Czerny & Chenglian Zhu & Franziska Krieg & Marta D. Rossell & Rolf Erni & Vanessa Wood & Ivan Infante & Maksym V. Kovalenko, 2022. "Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    6. Rui Zhou & Laizhi Sui & Xinbao Liu & Kaikai Liu & Dengyang Guo & Wenbo Zhao & Shiyu Song & Chaofan Lv & Shu Chen & Tianci Jiang & Zhe Cheng & Sheng Meng & Chongxin Shan, 2023. "Multiphoton excited singlet/triplet mixed self-trapped exciton emission," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Alexander E. Siemenn & Eunice Aissi & Fang Sheng & Armi Tiihonen & Hamide Kavak & Basita Das & Tonio Buonassisi, 2024. "Using scalable computer vision to automate high-throughput semiconductor characterization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Mubai Li & Riming Sun & Jingxi Chang & Jingjin Dong & Qiushuang Tian & Hongze Wang & Zihao Li & Pinghui Yang & Haokun Shi & Chao Yang & Zichao Wu & Renzhi Li & Yingguo Yang & Aifei Wang & Shitong Zhan, 2023. "Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. E. Kirstein & N. E. Kopteva & D. R. Yakovlev & E. A. Zhukov & E. V. Kolobkova & M. S. Kuznetsova & V. V. Belykh & I. A. Yugova & M. M. Glazov & M. Bayer & A. Greilich, 2023. "Mode locking of hole spin coherences in CsPb(Cl, Br)3 perovskite nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Liang, Qi & He, Ya-Ling & Ren, Qinlong & Zhou, Yi-Peng & Xie, Tao, 2018. "A detailed study on phonon transport in thin silicon membranes with phononic crystal nanostructures," Applied Energy, Elsevier, vol. 227(C), pages 731-741.
    11. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    12. Philippe Tamarat & Elise Prin & Yuliia Berezovska & Anastasiia Moskalenko & Thi Phuc Tan Nguyen & Chenghui Xia & Lei Hou & Jean-Baptiste Trebbia & Marios Zacharias & Laurent Pedesseau & Claudine Katan, 2023. "Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Boro, Bibha & Gogoi, B. & Rajbongshi, B.M. & Ramchiary, A., 2018. "Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2264-2270.
    14. Paolo Mariani & Miguel Ángel Molina-García & Jessica Barichello & Marilena Isabella Zappia & Erica Magliano & Luigi Angelo Castriotta & Luca Gabatel & Sanjay Balkrishna Thorat & Antonio Esaú Rio Casti, 2024. "Low-temperature strain-free encapsulation for perovskite solar cells and modules passing multifaceted accelerated ageing tests," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Jamal, M.S. & Bashar, M.S. & Hasan, A.K. Mahmud & Almutairi, Zeyad A. & Alharbi, Hamad F. & Alharthi, Nabeel H. & Karim, Mohammad R. & Misran, H. & Amin, Nowshad & Sopian, Kamaruzzaman Bin & Akhtaruzz, 2018. "Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 469-488.
    16. Shiun-Jr Yang & David J. Wales & Esmae J. Woods & Graham R. Fleming, 2024. "Design principles for energy transfer in the photosystem II supercomplex from kinetic transition networks," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Lan, Yang & Changshi, Liu, 2023. "Conductance is responsible for the power conversion efficiency of solar cell," Energy, Elsevier, vol. 278(PB).
    18. Boucar Diouf & Aarti Muley & Ramchandra Pode, 2023. "Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications," Energies, MDPI, vol. 16(18), pages 1-29, September.
    19. Sudhir Kumar & Tommaso Marcato & Frank Krumeich & Yen-Ting Li & Yu-Cheng Chiu & Chih-Jen Shih, 2022. "Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Hobeom Kim & So-Min Yoo & Bin Ding & Hiroyuki Kanda & Naoyuki Shibayama & Maria A. Syzgantseva & Farzaneh Fadaei Tirani & Pascal Schouwink & Hyung Joong Yun & Byoungchul Son & Yong Ding & Beom-Soo Kim, 2024. "Shallow-level defect passivation by 6H perovskite polytype for highly efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60313-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.