IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29849-6.html
   My bibliography  Save this article

Multivariate analysis of disorder in metal–organic frameworks

Author

Listed:
  • Adam F. Sapnik

    (University of Cambridge)

  • Irene Bechis

    (Molecular Sciences Research Hub, White City Campus)

  • Alice M. Bumstead

    (University of Cambridge)

  • Timothy Johnson

    (Blount’s Court, Sonning Common)

  • Philip A. Chater

    (Harwell Campus)

  • David A. Keen

    (Rutherford Appleton Laboratory, Harwell Campus)

  • Kim E. Jelfs

    (Molecular Sciences Research Hub, White City Campus)

  • Thomas D. Bennett

    (University of Cambridge)

Abstract

The rational design of disordered frameworks is an appealing route to target functional materials. However, intentional realisation of such materials relies on our ability to readily characterise and quantify structural disorder. Here, we use multivariate analysis of pair distribution functions to fingerprint and quantify the disorder within a series of compositionally identical metal–organic frameworks, possessing different crystalline, disordered, and amorphous structures. We find this approach can provide powerful insight into the kinetics and mechanism of structural collapse that links these materials. Our methodology is also extended to a very different system, namely the melting of a zeolitic imidazolate framework, to demonstrate the potential generality of this approach across many areas of disordered structural chemistry.

Suggested Citation

  • Adam F. Sapnik & Irene Bechis & Alice M. Bumstead & Timothy Johnson & Philip A. Chater & David A. Keen & Kim E. Jelfs & Thomas D. Bennett, 2022. "Multivariate analysis of disorder in metal–organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29849-6
    DOI: 10.1038/s41467-022-29849-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29849-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29849-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiao Hua & Phoebe K. Allan & Chen Gong & Philip A. Chater & Ella M. Schmidt & Harry S. Geddes & Alex W. Robertson & Peter G. Bruce & Andrew L. Goodwin, 2021. "Non-equilibrium metal oxides via reconversion chemistry in lithium-ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Thomas D. Bennett & Jin-Chong Tan & Yuanzheng Yue & Emma Baxter & Caterina Ducati & Nick J. Terrill & Hamish H. -M. Yeung & Zhongfu Zhou & Wenlin Chen & Sebastian Henke & Anthony K. Cheetham & G. Nevi, 2015. "Hybrid glasses from strong and fragile metal-organic framework liquids," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Ziqian Xue & Kang Liu & Qinglin Liu & Yinle Li & Manrong Li & Cheng-Yong Su & Naoki Ogiwara & Hirokazu Kobayashi & Hiroshi Kitagawa & Min Liu & Guangqin Li, 2019. "Missing-linker metal-organic frameworks for oxygen evolution reaction," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. David A. Keen & Andrew L. Goodwin, 2015. "The crystallography of correlated disorder," Nature, Nature, vol. 521(7552), pages 303-309, May.
    5. Anish Agarwal & Devavrat Shah & Dennis Shen & Dogyoon Song, 2021. "On Robustness of Principal Component Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1731-1745, October.
    6. Matthew J. Cliffe & Wei Wan & Xiaodong Zou & Philip A. Chater & Annette K. Kleppe & Matthew G. Tucker & Heribert Wilhelm & Nicholas P. Funnell & François-Xavier Coudert & Andrew L Goodwin, 2014. "Correlated defect nanoregions in a metal–organic framework," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nattapol Ma & Ryo Ohtani & Hung M. Le & Søren S. Sørensen & Ryuta Ishikawa & Satoshi Kawata & Sareeya Bureekaew & Soracha Kosasang & Yoshiyuki Kawazoe & Koji Ohara & Morten M. Smedskjaer & Satoshi Hor, 2022. "Exploration of glassy state in Prussian blue analogues," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    3. Sergio Tatay & Sonia Martínez-Giménez & Ana Rubio-Gaspar & Eloy Gómez-Oliveira & Javier Castells-Gil & Zhuoya Dong & Álvaro Mayoral & Neyvis Almora-Barrios & Natalia M. Padial & Carlos Martí-Gastaldo, 2023. "Synthetic control of correlated disorder in UiO-66 frameworks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Alberto Abadie & Anish Agarwal & Raaz Dwivedi & Abhin Shah, 2024. "Doubly Robust Inference in Causal Latent Factor Models," Papers 2402.11652, arXiv.org, revised Apr 2024.
    5. Anish Agarwal & Keegan Harris & Justin Whitehouse & Zhiwei Steven Wu, 2023. "Adaptive Principal Component Regression with Applications to Panel Data," Papers 2307.01357, arXiv.org, revised Oct 2023.
    6. Wen-Long Xue & Guo-Qiang Li & Hui Chen & Yu-Chen Han & Li Feng & Lu Wang & Xiao-Ling Gu & Si-Yuan Hu & Yu-Heng Deng & Lei Tan & Martin T. Dove & Wei Li & Jiangwei Zhang & Hongliang Dong & Zhiqiang Che, 2024. "Melt-quenched glass formation of a family of metal-carboxylate frameworks," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Li, Qingmeng & Han, Ning & Chai, Jiali & Zhang, Wei & Du, Jiakai & Tian, Hao & Liu, Hao & Wang, Guoxiu & Tang, Bohejin, 2023. "Strategies to improve metal-organic frameworks and their derived oxides as lithium storage anode materials," Energy, Elsevier, vol. 282(C).
    8. Jiulin Hu & Chuanzhong Lai & Keyi Chen & Qingping Wu & Yuping Gu & Chenglong Wu & Chilin Li, 2022. "Dual fluorination of polymer electrolyte and conversion-type cathode for high-capacity all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Anish Agarwal & Rahul Singh, 2021. "Causal Inference with Corrupted Data: Measurement Error, Missing Values, Discretization, and Differential Privacy," Papers 2107.02780, arXiv.org, revised Feb 2024.
    10. Luis Costa & Vivek F. Farias & Patricio Foncea & Jingyuan (Donna) Gan & Ayush Garg & Ivo Rosa Montenegro & Kumarjit Pathak & Tianyi Peng & Dusan Popovic, 2023. "Generalized Synthetic Control for TestOps at ABI: Models, Algorithms, and Infrastructure," Interfaces, INFORMS, vol. 53(5), pages 336-349, September.
    11. Bernardo García Bulle & Dennis Shen & Devavrat Shah & Anette E. Hosoi, 2022. "Public health implications of opening National Football League stadiums during the COVID-19 pandemic," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 119(14), pages 2114226119-, April.
    12. Louis Frentzel-Beyme & Pascal Kolodzeiski & Jan-Benedikt Weiß & Andreas Schneemann & Sebastian Henke, 2022. "Quantification of gas-accessible microporosity in metal-organic framework glasses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Zongwu Cai & Ying Fang & Ming Lin & Zixuan Wu, 2023. "A Quasi Synthetic Control Method for Nonlinear Models With High-Dimensional Covariates," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202305, University of Kansas, Department of Economics, revised Aug 2023.
    14. Wenlong Xu & Yuwei Zhang & Junjun Wang & Yixiu Xu & Li Bian & Qiang Ju & Yuemin Wang & Zhenlan Fang, 2022. "Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Nikolaj Roth & Andrew L. Goodwin, 2023. "Tuning electronic and phononic states with hidden order in disordered crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Yuta Yasui & Masataka Tansho & Kotaro Fujii & Yuichi Sakuda & Atsushi Goto & Shinobu Ohki & Yuuki Mogami & Takahiro Iijima & Shintaro Kobayashi & Shogo Kawaguchi & Keiichi Osaka & Kazutaka Ikeda & Tos, 2023. "Hidden chemical order in disordered Ba7Nb4MoO20 revealed by resonant X-ray diffraction and solid-state NMR," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Ella Mara Schmidt & Paul Benjamin Klar & Yaşar Krysiak & Petr Svora & Andrew L. Goodwin & Lukas Palatinus, 2023. "Quantitative three-dimensional local order analysis of nanomaterials through electron diffraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Yao Fu & Yifeng Yao & Alexander C. Forse & Jianhua Li & Kenji Mochizuki & Jeffrey R. Long & Jeffrey A. Reimer & Gaël Paëpe & Xueqian Kong, 2023. "Solvent-derived defects suppress adsorption in MOF-74," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Anish Agarwal & Vasilis Syrgkanis, 2022. "Synthetic Blip Effects: Generalizing Synthetic Controls for the Dynamic Treatment Regime," Papers 2210.11003, arXiv.org.
    20. Angela Zhou & Andrew Koo & Nathan Kallus & Rene Ropac & Richard Peterson & Stephen Koppel & Tiffany Bergin, 2021. "An Empirical Evaluation of the Impact of New York's Bail Reform on Crime Using Synthetic Controls," Papers 2111.08664, arXiv.org, revised Jun 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29849-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.