IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58402-4.html
   My bibliography  Save this article

A lanthanide MOF with nanostructured node disorder

Author

Listed:
  • Sarah L. Griffin

    (University of Birmingham)

  • Emily G. Meekel

    (Kyoto University)

  • Johnathan M. Bulled

    (ESRF)

  • Stefano Canossa

    (Anorganische Funktionsmaterialien)

  • Alexander Wahrhaftig-Lewis

    (University of Birmingham)

  • Ella M. Schmidt

    (University of Bremen)

  • Neil R. Champness

    (University of Birmingham)

Abstract

Structural disorder can be used to tune the properties of functional materials and is an important tool that can be employed for the development of complex framework materials, such as metal-organic frameworks. Here we show the synthesis and structural characterization of a metal-organic framework, UoB-100(Dy). Average structure refinements indicate that the node is disordered between two orientations of the nonanuclear secondary building unit (SBU). By performing 3D diffuse scattering (DS) analysis and Monte Carlo (MC) simulations, we confirm the presence of strong correlations between the metal clusters of UoB-100(Dy). These nodes assemble into a complex nanodomain structure. Quantum mechanical calculations identify linker strain as the driving force behind the nanodomain structure. The implications of such a nanodomain structure for the magnetic, gas storage, and mechanical properties of lanthanide MOFs are discussed.

Suggested Citation

  • Sarah L. Griffin & Emily G. Meekel & Johnathan M. Bulled & Stefano Canossa & Alexander Wahrhaftig-Lewis & Ella M. Schmidt & Neil R. Champness, 2025. "A lanthanide MOF with nanostructured node disorder," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58402-4
    DOI: 10.1038/s41467-025-58402-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58402-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58402-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fei Li & Shujun Zhang & Tiannan Yang & Zhuo Xu & Nan Zhang & Gang Liu & Jianjun Wang & Jianli Wang & Zhenxiang Cheng & Zuo-Guang Ye & Jun Luo & Thomas R. Shrout & Long-Qing Chen, 2016. "The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    2. M. Eremenko & V. Krayzman & A. Bosak & H. Y. Playford & K. W. Chapman & J. C. Woicik & B. Ravel & I. Levin, 2019. "Local atomic order and hierarchical polar nanoregions in a classical relaxor ferroelectric," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Jacob I. Deneff & Lauren E. S. Rohwer & Kimberly S. Butler & Bryan Kaehr & Dayton J. Vogel & Ting S. Luk & Raphael A. Reyes & Alvaro A. Cruz-Cabrera & James E. Martin & Dorina F. Sava Gallis, 2023. "Orthogonal luminescence lifetime encoding by intermetallic energy transfer in heterometallic rare-earth MOFs," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Mads C. Weber & Mael Guennou & Donald M. Evans & Constance Toulouse & Arkadiy Simonov & Yevheniia Kholina & Xiaoxuan Ma & Wei Ren & Shixun Cao & Michael A. Carpenter & Brahim Dkhil & Manfred Fiebig & , 2022. "Emerging spin–phonon coupling through cross-talk of two magnetic sublattices," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. David A. Keen & Andrew L. Goodwin, 2015. "The crystallography of correlated disorder," Nature, Nature, vol. 521(7552), pages 303-309, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Liu & Xiaoming Shi & Yonghao Yao & Huajie Luo & Qiang Li & Houbing Huang & He Qi & Yuanpeng Zhang & Yang Ren & Shelly D. Kelly & Krystian Roleder & Joerg C. Neuefeind & Long-Qing Chen & Xianran Xi, 2023. "Emergence of high piezoelectricity from competing local polar order-disorder in relaxor ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jie Yin & Xiaoming Shi & Hong Tao & Zhi Tan & Xiang Lv & Xiangdong Ding & Jun Sun & Yang Zhang & Xingmin Zhang & Kui Yao & Jianguo Zhu & Houbing Huang & Haijun Wu & Shujun Zhang & Jiagang Wu, 2022. "Deciphering the atomic-scale structural origin for large dynamic electromechanical response in lead-free Bi0.5Na0.5TiO3-based relaxor ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Liya Yang & Houbing Huang & Zengzhe Xi & Limei Zheng & Shiqi Xu & Gang Tian & Yuzhi Zhai & Feifei Guo & Lingping Kong & Yonggang Wang & Weiming Lü & Long Yuan & Minglei Zhao & Haiwu Zheng & Gang Liu, 2022. "Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Yongke Yan & Liwei D. Geng & Hairui Liu & Haoyang Leng & Xiaotian Li & Yu U. Wang & Shashank Priya, 2022. "Near-ideal electromechanical coupling in textured piezoelectric ceramics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Zhengqian Fu & Xuefeng Chen & Henchang Nie & Yanyu Liu & Jiawang Hong & Tengfei Hu & Ziyi Yu & Zhenqin Li & Linlin Zhang & Heliang Yao & Yuanhua Xia & Zhipeng Gao & Zheyi An & Nan Zhang & Fei Cao & He, 2022. "Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O3," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yuta Yasui & Masataka Tansho & Kotaro Fujii & Yuichi Sakuda & Atsushi Goto & Shinobu Ohki & Yuuki Mogami & Takahiro Iijima & Shintaro Kobayashi & Shogo Kawaguchi & Keiichi Osaka & Kazutaka Ikeda & Tos, 2023. "Hidden chemical order in disordered Ba7Nb4MoO20 revealed by resonant X-ray diffraction and solid-state NMR," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Nattapol Ma & Ryo Ohtani & Hung M. Le & Søren S. Sørensen & Ryuta Ishikawa & Satoshi Kawata & Sareeya Bureekaew & Soracha Kosasang & Yoshiyuki Kawazoe & Koji Ohara & Morten M. Smedskjaer & Satoshi Hor, 2022. "Exploration of glassy state in Prussian blue analogues," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Yuqi Jiang & Mao-Hua Zhang & Chao-Feng Wu & Ze Xu & Zhao Li & Jing-Tong Lu & Hao-Feng Huang & Jia-Jun Zhou & Yi-Xuan Liu & Tianhang Zhou & Wen Gong & Ke Wang, 2024. "Low-field-driven large strain in lead zirconate titanium-based piezoceramics incorporating relaxor lead magnesium niobate for actuation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Adam F. Sapnik & Irene Bechis & Alice M. Bumstead & Timothy Johnson & Philip A. Chater & David A. Keen & Kim E. Jelfs & Thomas D. Bennett, 2022. "Multivariate analysis of disorder in metal–organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Sajid Husain & Isaac Harris & Guanhui Gao & Xinyan Li & Peter Meisenheimer & Chuqiao Shi & Pravin Kavle & Chi Hun Choi & Tae Yeon Kim & Deokyoung Kang & Piush Behera & Didier Perrodin & Hua Guo & Jame, 2024. "Low-temperature grapho-epitaxial La-substituted BiFeO3 on metallic perovskite," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Ziwen Zhou & Shun Wang & Zhou Zhou & Yiqi Hu & Qiankun Li & Jinshuo Xue & Zhijian Feng & Qingyu Yan & Zhongshen Luo & Yuyan Weng & Rujun Tang & Xiaodong Su & Fengang Zheng & Kazuki Okamoto & Hiroshi F, 2023. "Unconventional polarization fatigue in van der Waals layered ferroelectric ionic conductor CuInP2S6," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Nikolaj Roth & Andrew L. Goodwin, 2023. "Tuning electronic and phononic states with hidden order in disordered crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Ella Mara Schmidt & Paul Benjamin Klar & Yaşar Krysiak & Petr Svora & Andrew L. Goodwin & Lukas Palatinus, 2023. "Quantitative three-dimensional local order analysis of nanomaterials through electron diffraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Xingcheng Wang & Ji Zhang & Xingshuai Ma & Huajie Luo & Laijun Liu & Hui Liu & Jun Chen, 2025. "Machine learning assisted composition design of high-entropy Pb-free relaxors with giant energy-storage," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    15. Xinyue Qiu & Chao Wu & Daniel Q. Tan & Ruihong Liang & Chen Liu & Yinchang Ma & Xi-xiang Zhang & Shiyang Wei & Junwei Zhang & Zhi Tan & Zhipeng Wang & Xiang Lv & Jiagang Wu, 2025. "Excellent hardening effect in lead-free piezoceramics by embedding local Cu-doped defect dipoles in phase boundary engineering," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58402-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.