IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61250-x.html
   My bibliography  Save this article

Harnessing local inhomogeneity for enhanced dielectric energy storage

Author

Listed:
  • Yiqian Liu

    (Tsinghua University)

  • Bingbing Yang

    (Chinese Academy of Sciences)

  • Shun Lan

    (Tsinghua University)

  • Zhifang Zhou

    (Central South University)

  • Lvye Dou

    (Tsinghua University)

  • Ce-Wen Nan

    (Tsinghua University)

  • Yuan-Hua Lin

    (Tsinghua University)

Abstract

Inorganic dielectric capacitors are highly demanded in pulsed systems due to their high-power output, but the low energy density limits device miniaturization. Relaxor ferroelectrics with local inhomogeneity are leading candidates for energy storage because of small hysteresis and relatively high polarization. However, the mechanism of local inhomogeneity in high-performance relaxor ferroelectrics is still not well understood due to limitations in characterization techniques and insufficient interpretation of computations. We reveal the microstructural origin of enhanced energy storage performance based on polar nanoregion and polar slush models. While smaller domains improve energy storage, more crucial factors are electrostatic interactions between polar and non-polar regions and intense disordered random fields, caused by local inhomogeneity. Combining merits of both models, we develop a framework directly relating local inhomogeneity to dielectric properties that successfully simulates solid solutions and high-entropy dielectrics. Our results can offer insights into energy storage performance in complex relaxor ferroelectrics.

Suggested Citation

  • Yiqian Liu & Bingbing Yang & Shun Lan & Zhifang Zhou & Lvye Dou & Ce-Wen Nan & Yuan-Hua Lin, 2025. "Harnessing local inhomogeneity for enhanced dielectric energy storage," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61250-x
    DOI: 10.1038/s41467-025-61250-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61250-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61250-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Suraj S. Cheema & Nirmaan Shanker & Shang-Lin Hsu & Joseph Schaadt & Nathan M. Ellis & Matthew Cook & Ravi Rastogi & Robert C. N. Pilawa-Podgurski & Jim Ciston & Mohamed Mohamed & Sayeef Salahuddin, 2024. "Giant energy storage and power density negative capacitance superlattices," Nature, Nature, vol. 629(8013), pages 803-809, May.
    2. Bingbing Yang & Qinghua Zhang & Houbing Huang & Hao Pan & Wenxuan Zhu & Fanqi Meng & Shun Lan & Yiqian Liu & Bin Wei & Yiqun Liu & Letao Yang & Lin Gu & Long-Qing Chen & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Engineering relaxors by entropy for high energy storage performance," Nature Energy, Nature, vol. 8(9), pages 956-964, September.
    3. Hao Pan & Jing Ma & Ji Ma & Qinghua Zhang & Xiaozhi Liu & Bo Guan & Lin Gu & Xin Zhang & Yu-Jun Zhang & Liangliang Li & Yang Shen & Yuan-Hua Lin & Ce-Wen Nan, 2018. "Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Jian Fu & Aiwen Xie & Ruzhong Zuo & Yiqian Liu & He Qi & Zongqian Wang & Quan Feng & Jinming Guo & Kun Zeng & Xuefeng Chen & Zhengqian Fu & Yifan Zhang & Xuewen Jiang & Tianyu Li & Shujun Zhang & Yuan, 2024. "A highly polarizable concentrated dipole glass for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Ajay K. Yadav & Kayla X. Nguyen & Zijian Hong & Pablo García-Fernández & Pablo Aguado-Puente & Christopher T. Nelson & Sujit Das & Bhagwati Prasad & Daewoong Kwon & Suraj Cheema & Asif I. Khan & Chenm, 2019. "Author Correction: Spatially resolved steady-state negative capacitance," Nature, Nature, vol. 568(7753), pages 13-13, April.
    6. Liang Chen & Shiqing Deng & Hui Liu & Jie Wu & He Qi & Jun Chen, 2022. "Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Ajay K. Yadav & Kayla X. Nguyen & Zijian Hong & Pablo García-Fernández & Pablo Aguado-Puente & Christopher T. Nelson & Sujit Das & Bhagwati Prasad & Daewoong Kwon & Suraj Cheema & Asif I. Khan & Chenm, 2019. "Spatially resolved steady-state negative capacitance," Nature, Nature, vol. 565(7740), pages 468-471, January.
    8. Fei Li & Shujun Zhang & Tiannan Yang & Zhuo Xu & Nan Zhang & Gang Liu & Jianjun Wang & Jianli Wang & Zhenxiang Cheng & Zuo-Guang Ye & Jun Luo & Thomas R. Shrout & Long-Qing Chen, 2016. "The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    9. Hiroyuki Takenaka & Ilya Grinberg & Shi Liu & Andrew M. Rappe, 2017. "Slush-like polar structures in single-crystal relaxors," Nature, Nature, vol. 546(7658), pages 391-395, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Wang & Zhong-Hui Shen & Wei Li & Run-Lin Liu & Yu-Lin Duan & Yang Shen & Han-Xing Liu & Ce-Wen Nan, 2025. "Dynamic atomic-scale electron avalanche breakdown in solid dielectrics," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Ibukun Olaniyan & Iurii Tikhonov & Valentin Väinö Hevelke & Sven Wiesner & Leifeng Zhang & Anna Razumnaya & Nikolay Cherkashin & Sylvie Schamm-Chardon & Igor Lukyanchuk & Dong-Jik Kim & Catherine Dubo, 2024. "Switchable topological polar states in epitaxial BaTiO3 nanoislands on silicon," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Weichen Zhao & Zhaobo Liu & Diming Xu & Ge Wang & Da Li & Jinnan Liu & Zhentao Wang & Yan Guo & Jiajia Ren & Tao Zhou & Lixia Pang & Hongwei Yang & Wenfeng Liu & Houbin Huang & Di Zhou, 2025. "Advanced stability and energy storage capacity in hierarchically engineered Bi0.5Na0.5TiO3-based multilayer capacitors," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    4. Wan-Rong Geng & Xiangwei Guo & Yin-Lian Zhu & Desheng Ma & Yun-Long Tang & Yu-Jia Wang & Yongjun Wu & Zijian Hong & Xiu-Liang Ma, 2025. "Observation of multi-order polar radial vortices and their topological transition," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    5. Mengfan Guo & Erxiang Xu & Houbing Huang & Changqing Guo & Hetian Chen & Shulin Chen & Shan He & Le Zhou & Jing Ma & Zhonghui Shen & Ben Xu & Di Yi & Peng Gao & Ce-Wen Nan & Neil. D. Mathur & Yang She, 2024. "Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Xiaoyan Dong & Zhengqian Fu & Zhipeng Wang & Xiang Lv & Jiagang Wu, 2025. "Engineering relaxors by embedding ultra-weak polar regions for superior energy storage," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Jianhong Duan & Kun Wei & Qianbiao Du & Linzhao Ma & Huifen Yu & He Qi & Yangchun Tan & Gaokuo Zhong & Hao Li, 2024. "High-entropy superparaelectrics with locally diverse ferroic distortion for high-capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Jie Zhang & Yong Liu & Thomas Dittrich & Zhuan Wang & Pengxiang Ji & Mingrun Li & Na Ta & Hongyan Zhang & Chao Zhen & Yanjun Xu & Dongfeng Li & Zhendong Feng & Zheng Li & Yaling Luo & Junhao Cui & Don, 2025. "Unveiling charge utilization mechanisms in ferroelectric for water splitting," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    9. Yu-Jia Wang & Yan-Peng Feng & Yun-Long Tang & Yin-Lian Zhu & Yi Cao & Min-Jie Zou & Wan-Rong Geng & Xiu-Liang Ma, 2024. "Polar Bloch points in strained ferroelectric films," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Yajing Liu & Mengsha Li & Kai Jiang & Yang Zhang & Pin Gong & Sijia Song & Dong Li & Huan Liang & Xinmiao Huang & Jing Wang & Weiwei Li & Ce-Wen Nan, 2025. "Radiation-hardened dendritic-like nanocomposite films with ultrahigh capacitive energy density," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Hui Liu & Xiaoming Shi & Yonghao Yao & Huajie Luo & Qiang Li & Houbing Huang & He Qi & Yuanpeng Zhang & Yang Ren & Shelly D. Kelly & Krystian Roleder & Joerg C. Neuefeind & Long-Qing Chen & Xianran Xi, 2023. "Emergence of high piezoelectricity from competing local polar order-disorder in relaxor ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Zhentao Wang & Da Li & Wenyuan Liu & Liqiang He & Diming Xu & Jinnan Liu & Jiajia Ren & Xin Wang & Yang Liu & Guoqiang He & Jian Bao & Zhen Fang & Guiwei Yan & Xu Liang & Tao Zhou & Weichen Zhao & Wen, 2025. "Ultra-high energy storage in lead-free NaNbO3-based relaxor ceramics with directional slush-like polar structures design," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    13. Yongbo Fan & Wanbo Qu & Haifa Qiu & Shuaibing Gao & Lu Li & Zezhou Lin & Yuxuan Yang & Junyi Yu & Lin Wang & Saiwei Luan & Hao Li & Lin Lei & Yang Zhang & Huiqing Fan & Haijun Wu & Shuhui Yu & Haitao , 2025. "High entropy modulated quantum paraelectric perovskite for capacitive energy storage," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    14. Wei Li & Zhong-Hui Shen & Run-Lin Liu & Xiao-Xiao Chen & Meng-Fan Guo & Jin-Ming Guo & Hua Hao & Yang Shen & Han-Xing Liu & Long-Qing Chen & Ce-Wen Nan, 2024. "Generative learning facilitated discovery of high-entropy ceramic dielectrics for capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Michael Hoffmann & Zheng Wang & Nujhat Tasneem & Ahmad Zubair & Prasanna Venkatesan Ravindran & Mengkun Tian & Anthony Arthur Gaskell & Dina Triyoso & Steven Consiglio & Kandabara Tapily & Robert Clar, 2022. "Antiferroelectric negative capacitance from a structural phase transition in zirconia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Wenjun Cao & Yanwei Wu & Xiaoyu Yang & Daqin Guan & Xuecen Huang & Feng Li & Youmin Guo & Chunchang Wang & Binghui Ge & Xu Hou & Zhenxiang Cheng, 2025. "Breaking polarization-breakdown strength paradox for ultrahigh energy storage density in NBT-based ceramics," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Sandhya Susarla & Pablo García-Fernández & Colin Ophus & Sujit Das & Pablo Aguado-Puente & Margaret McCarter & Peter Ercius & Lane W. Martin & Ramamoorthy Ramesh & Javier Junquera, 2021. "Atomic scale crystal field mapping of polar vortices in oxide superlattices," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    18. Mingqiang Li & Tiannan Yang & Pan Chen & Yongjun Wang & Ruixue Zhu & Xiaomei Li & Ruochen Shi & Heng-Jui Liu & Yen-Lin Huang & Xiumei Ma & Jingmin Zhang & Xuedong Bai & Long-Qing Chen & Ying-Hao Chu &, 2022. "Electric-field control of the nucleation and motion of isolated three-fold polar vertices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Xiangfu Zeng & Jinfeng Lin & Gaolei Dong & Jie Shen & Luomeng Tang & Qifa Lin & Simin Wang & Min Gao & Chunlin Zhao & Tengfei Lin & Laihui Luo & Chao Chen & Baisheng Sa & Cong Lin & Xiao Wu & Jiwei Zh, 2025. "Polymorphic relaxor phase and defect dipole polarization co-reinforced capacitor energy storage in temperature-monitorable high-entropy ferroelectrics," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    20. Tongxin Wei & Jinzhu Zou & Xuefan Zhou & Miao Song & Yan Zhang & Cewen Nan & Yuanhua Lin & Dou Zhang, 2025. "High-entropy assisted capacitive energy storage in relaxor ferroelectrics by chemical short-range order," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61250-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.