Author
Abstract
Investigating the temporal dynamics of gene expression is crucial for understanding gene regulation across various biological processes. Using the Fluorescent Timer protein, the Timer-of-cell-kinetics-and-activity system enables analysis of transcriptional dynamics at the single-cell level. However, the complexity of Timer fluorescence data has limited its broader application. Here, we introduce an integrative approach combining molecular biology and machine learning to elucidate Foxp3 transcriptional dynamics through flow cytometric Timer analysis. We have developed a convolutional neural network-based method that incorporates image conversion and class-specific feature visualisation for class-specific feature identification at the single-cell level. Biologically, we developed a novel CRISPR mutant of Foxp3 fluorescent Timer reporter mice lacking the enhancer Conserved Non-coding Sequence 2, which revealed new roles of this enhancer in regulating Foxp3 transcription frequency under specific conditions. Furthermore, analysis of wild-type Foxp3 fluorescent Timer reporter mice at different ages uncovered distinct patterns of Foxp3 expression from neonatal to aged mice, highlighting prominent thymus-like features of neonatal splenic Foxp3+ T cells. In conclusion, our study uncovers previously unrecognised Foxp3 transcriptional dynamics, establishing a proof-of-concept for integrating CRISPR, single-cell dynamics analysis, and machine learning methods as advanced techniques to understand transcriptional dynamics in vivo.
Suggested Citation
Nobuko Irie & Naoki Takeda & Yorifumi Satou & Kimi Araki & Masahiro Ono, 2025.
"Machine learning-assisted decoding of temporal transcriptional dynamics via fluorescent timer,"
Nature Communications, Nature, vol. 16(1), pages 1-21, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61279-y
DOI: 10.1038/s41467-025-61279-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61279-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.