IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61086-5.html
   My bibliography  Save this article

Three-dimensional conductive conjugated polyelectrolyte gels facilitate interfacial electron transfer for improved biophotovoltaic performance

Author

Listed:
  • Zhongxin Chen

    (National University of Singapore)

  • Samantha R. McCuskey

    (Nanyang Technological University
    Nanyang Technological University)

  • Weidong Zhang

    (National University of Singapore
    National University of Singapore
    National University Singapore)

  • Benjamin Rui Peng Yip

    (National University of Singapore)

  • Glenn Quek

    (National University of Singapore)

  • Yan Jiang

    (National University of Singapore)

  • David Ohayon

    (National University of Singapore)

  • Shujian Ong

    (National University of Singapore)

  • Binu Kundukad

    (Nanyang Technological University)

  • Xianwen Mao

    (National University of Singapore
    National University of Singapore
    National University Singapore)

  • Guillermo C. Bazan

    (National University of Singapore
    Nanyang Technological University)

Abstract

Living biophotovoltaics represent a potentially green and sustainable method to generate bio-electricity by harnessing photosynthetic microorganisms. However, barriers to electron transfer across the abiotic/biotic interface hinder solar-to-electricity conversion efficiencies. Herein, we report on a facile method to improve interfacial electron transfer by combining the photosynthetic cyanobacterium Synechococcus elongatus PCC 7942 (S. elongatus) with a conjugated polyelectrolyte (CPE) atop indium tin oxide (ITO) charge-collecting electrodes. By self-assembly of the CPE with S. elongatus, soft and semitransparent S. elongatus/CPE biocomposites are formed with three-dimensional (3D) conductive networks that exhibit mixed ionic-electronic conduction. This specific architecture enhances both the natural and mediated exoelectrogenic pathway from cells to electrodes, enabling improved photocurrent output compared to bacteria alone. Electrochemical studies confirm the improved electron transfer at the biotic-abiotic interface through the CPE. Furthermore, microscopic photocurrent mapping of the biocomposites down to the single-cell level reveals a ~ 0.2 nanoampere output per cell, which translates to a 10-fold improvement relative to that of bare S. elongatus, corroborating efficient electron transport from S. elongatus to the electrode. This synergistic combination of biotic and abiotic materials underpins the improved performance of biophotovoltaic devices, offering broader insights into the electron transfer mechanisms relevant to photosynthesis and bioelectronic systems.

Suggested Citation

  • Zhongxin Chen & Samantha R. McCuskey & Weidong Zhang & Benjamin Rui Peng Yip & Glenn Quek & Yan Jiang & David Ohayon & Shujian Ong & Binu Kundukad & Xianwen Mao & Guillermo C. Bazan, 2025. "Three-dimensional conductive conjugated polyelectrolyte gels facilitate interfacial electron transfer for improved biophotovoltaic performance," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61086-5
    DOI: 10.1038/s41467-025-61086-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61086-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61086-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gadiel Saper & Dan Kallmann & Felipe Conzuelo & Fangyuan Zhao & Tünde N. Tóth & Varda Liveanu & Sagit Meir & Jedrzej Szymanski & Asaph Aharoni & Wolfgang Schuhmann & Avner Rothschild & Gadi Schuster &, 2018. "Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Tobias Wenzel & Daniel Härtter & Paolo Bombelli & Christopher J. Howe & Ullrich Steiner, 2018. "Porous translucent electrodes enhance current generation from photosynthetic biofilms," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Kadi L. Saar & Paolo Bombelli & David J. Lea-Smith & Toby Call & Eva-Mari Aro & Thomas Müller & Christopher J. Howe & Tuomas P. J. Knowles, 2018. "Enhancing power density of biophotovoltaics by decoupling storage and power delivery," Nature Energy, Nature, vol. 3(1), pages 75-81, January.
    4. Tomi K. Baikie & Laura T. Wey & Joshua M. Lawrence & Hitesh Medipally & Erwin Reisner & Marc M. Nowaczyk & Richard H. Friend & Christopher J. Howe & Christoph Schnedermann & Akshay Rao & Jenny Z. Zhan, 2023. "Photosynthesis re-wired on the pico-second timescale," Nature, Nature, vol. 615(7954), pages 836-840, March.
    5. Shoko Kusama & Seiji Kojima & Ken Kimura & Ginga Shimakawa & Chikahiro Miyake & Kenya Tanaka & Yasuaki Okumura & Shuji Nakanishi, 2022. "Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haowei & Zhu, Huawei & Zhang, Yanping & Li, Yin, 2024. "Boosting electricity generation in biophotovoltaics through nanomaterials targeting specific cellular locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Shoko Kusama & Seiji Kojima & Ken Kimura & Ginga Shimakawa & Chikahiro Miyake & Kenya Tanaka & Yasuaki Okumura & Shuji Nakanishi, 2022. "Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Tanvir, Rahamat Ullah & Zhang, Jianying & Canter, Timothy & Chen, Dick & Lu, Jingrang & Hu, Zhiqiang, 2021. "Harnessing solar energy using phototrophic microorganisms: A sustainable pathway to bioenergy, biomaterials, and environmental solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Augustinas Silale & Yiling Zhu & Jerzy Witwinowski & Robert E. Smith & Kahlan E. Newman & Satya P. Bhamidimarri & Arnaud Baslé & Syma Khalid & Christophe Beloin & Simonetta Gribaldo & Bert Berg, 2023. "Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Jie Ye & Minghan Zhuang & Mingqiu Hong & Dong Zhang & Guoping Ren & Andong Hu & Chaohui Yang & Zhen He & Shungui Zhou, 2024. "Methanogenesis in the presence of oxygenic photosynthetic bacteria may contribute to global methane cycle," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Christopher J Howe & Paolo Bombelli, 2023. "Is it realistic to use microbial photosynthesis to produce electricity directly?," PLOS Biology, Public Library of Science, vol. 21(3), pages 1-4, March.
    7. Bin Mu & Xiangnan Hao & Xiao Luo & Zhongke Yang & Huanjun Lu & Wei Tian, 2024. "Bioinspired polymeric supramolecular columns as efficient yet controllable artificial light-harvesting platform," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Xu, Ting & Song, Jianan & Lin, Weichen & Fu, Boya & Guo, Xingguo & Huang, Xia & Wu, Hui & Zhang, Xiaoyuan, 2021. "A freestanding carbon submicro fiber sponge as high-efficient bioelectrochemical anode for wastewater energy recovery and treatment," Applied Energy, Elsevier, vol. 281(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61086-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.