IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60787-1.html
   My bibliography  Save this article

Gears in chemical reaction networks for optimizing energy transduction efficiency

Author

Listed:
  • Massimo Bilancioni

    (University of Luxembourg)

  • Massimiliano Esposito

    (University of Luxembourg)

Abstract

Similarly to gear systems in vehicles, most chemical reaction networks (CRNs) involved in energy transduction have at their disposal multiple transduction pathways, each characterized by distinct efficiencies. We conceptualize these pathways as ‘chemical gears’ and demonstrate their role in refining the second law of thermodynamics. This allows us to determine the optimal efficiency of a CRN, and the gear enabling it, solely based on its topology and operating conditions, defined by the chemical potentials of its input and output species. By suitably tuning reaction kinetics, a CRN can be engineered to self-regulate its gear settings, maintaining optimal efficiency under varying external conditions. We demonstrate this principle in a biological context with a CRN where enzymes function as gear shifters, autonomously adapting the system to achieve near-optimal efficiency across changing environments. Additionally, we analyze the gear system of an artificial molecular motor, identifying numerous counterproductive gears and providing insights into its transduction capabilities and optimization.

Suggested Citation

  • Massimo Bilancioni & Massimiliano Esposito, 2025. "Gears in chemical reaction networks for optimizing energy transduction efficiency," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60787-1
    DOI: 10.1038/s41467-025-60787-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60787-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60787-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60787-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.