IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60553-3.html
   My bibliography  Save this article

Room-temperature cavity exciton-polariton condensation in perovskite quantum dots

Author

Listed:
  • Ioannis Georgakilas

    (IBM Research Europe – Zurich
    Auguste-Piccard-Hof 1)

  • David Tiede

    (Américo Vespucio 49)

  • Darius Urbonas

    (IBM Research Europe – Zurich)

  • Rafał Mirek

    (IBM Research Europe – Zurich)

  • Clara Bujalance

    (Américo Vespucio 49)

  • Laura Caliò

    (Américo Vespucio 49)

  • Virginia Oddi

    (IBM Research Europe – Zurich
    Vladimir-Prelog-Weg 1-5/10)

  • Rui Tao

    (Vladimir-Prelog-Weg 1-5/10
    Empa − Swiss Federal Laboratories for Materials Science and Technology)

  • Dmitry N. Dirin

    (Vladimir-Prelog-Weg 1-5/10
    Empa − Swiss Federal Laboratories for Materials Science and Technology)

  • Gabriele Rainò

    (Vladimir-Prelog-Weg 1-5/10
    Empa − Swiss Federal Laboratories for Materials Science and Technology)

  • Simon C. Boehme

    (Vladimir-Prelog-Weg 1-5/10
    Empa − Swiss Federal Laboratories for Materials Science and Technology)

  • Juan F. Galisteo-López

    (Américo Vespucio 49)

  • Rainer F. Mahrt

    (IBM Research Europe – Zurich)

  • Maksym V. Kovalenko

    (Vladimir-Prelog-Weg 1-5/10
    Empa − Swiss Federal Laboratories for Materials Science and Technology)

  • Hernán Miguez

    (Américo Vespucio 49)

  • Thilo Stöferle

    (IBM Research Europe – Zurich)

Abstract

The exploitation of the strong light-matter coupling regime and exciton-polariton condensates has emerged as a compelling approach to introduce strong interactions and nonlinearities into numerous photonic applications. The use of colloidal semiconductor quantum dots with strong three-dimensional confinement as the active material in optical microcavities would be highly advantageous due to their versatile structural and compositional tunability and wet-chemical processability, as well as potentially enhanced, confinement-induced polaritonic interactions. Yet, to date, exciton-polariton condensation in a microcavity has neither been achieved with epitaxial nor with colloidal quantum dots. Here, we demonstrate room-temperature polariton condensation in a thin film of monodisperse, colloidal CsPbBr3 quantum dots, placed in a tunable optical resonator with a Gaussian-shaped deformation serving as wavelength-scale potential well for polaritons. The onset of polariton condensation under pulsed optical excitation is manifested in emission by its characteristic superlinear intensity dependence, reduced linewidth, blueshift, and extended temporal coherence.

Suggested Citation

  • Ioannis Georgakilas & David Tiede & Darius Urbonas & Rafał Mirek & Clara Bujalance & Laura Caliò & Virginia Oddi & Rui Tao & Dmitry N. Dirin & Gabriele Rainò & Simon C. Boehme & Juan F. Galisteo-López, 2025. "Room-temperature cavity exciton-polariton condensation in perovskite quantum dots," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60553-3
    DOI: 10.1038/s41467-025-60553-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60553-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60553-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Long Zhang & Fengcheng Wu & Shaocong Hou & Zhe Zhang & Yu-Hsun Chou & Kenji Watanabe & Takashi Taniguchi & Stephen R. Forrest & Hui Deng, 2021. "Van der Waals heterostructure polaritons with moiré-induced nonlinearity," Nature, Nature, vol. 591(7848), pages 61-65, March.
    2. Jingyi Tian & Qi Ying Tan & Yutao Wang & Yihao Yang & Guanghui Yuan & Giorgio Adamo & Cesare Soci, 2023. "Perovskite quantum dot one-dimensional topological laser," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Christian Schneider & Arash Rahimi-Iman & Na Young Kim & Julian Fischer & Ivan G. Savenko & Matthias Amthor & Matthias Lermer & Adriana Wolf & Lukas Worschech & Vladimir D. Kulakovskii & Ivan A. Shely, 2013. "An electrically pumped polariton laser," Nature, Nature, vol. 497(7449), pages 348-352, May.
    4. Philippe Tamarat & Elise Prin & Yuliia Berezovska & Anastasiia Moskalenko & Thi Phuc Tan Nguyen & Chenghui Xia & Lei Hou & Jean-Baptiste Trebbia & Marios Zacharias & Laurent Pedesseau & Claudine Katan, 2023. "Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Chenglian Zhu & Simon C. Boehme & Leon G. Feld & Anastasiia Moskalenko & Dmitry N. Dirin & Rainer F. Mahrt & Thilo Stöferle & Maryna I. Bodnarchuk & Alexander L. Efros & Peter C. Sercel & Maksym V. Ko, 2024. "Single-photon superradiance in individual caesium lead halide quantum dots," Nature, Nature, vol. 626(7999), pages 535-541, February.
    6. J. -M. Ménard & C. Poellmann & M. Porer & U. Leierseder & E. Galopin & A. Lemaître & A. Amo & J. Bloch & R. Huber, 2014. "Revealing the dark side of a bright exciton–polariton condensate," Nature Communications, Nature, vol. 5(1), pages 1-5, December.
    7. Philippe Tamarat & Elise Prin & Yuliia Berezovska & Anastasiia Moskalenko & Thi Phuc Tan Nguyen & Chenghui Xia & Lei Hou & Jean-Baptiste Trebbia & Marios Zacharias & Laurent Pedesseau & Claudine Katan, 2023. "Author Correction: Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Wei & Qirui Liu & Yuxiang Tang & Yingqian Ye & Zhongjie Xu & Tian Jiang, 2023. "Charged biexciton polaritons sustaining strong nonlinearity in 2D semiconductor-based nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Zhiheng Huang & Yunfei Bai & Yanchong Zhao & Le Liu & Xuan Zhao & Jiangbin Wu & Kenji Watanabe & Takashi Taniguchi & Wei Yang & Dongxia Shi & Yang Xu & Tiantian Zhang & Qingming Zhang & Ping-Heng Tan , 2024. "Observation of phonon Stark effect," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Jiaxin Zhao & Antonio Fieramosca & Kevin Dini & Ruiqi Bao & Wei Du & Rui Su & Yuan Luo & Weijie Zhao & Daniele Sanvitto & Timothy C. H. Liew & Qihua Xiong, 2023. "Exciton polariton interactions in Van der Waals superlattices at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Fuhuan Shen & Zhenghe Zhang & Yaoqiang Zhou & Jingwen Ma & Kun Chen & Huanjun Chen & Shaojun Wang & Jianbin Xu & Zefeng Chen, 2022. "Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Qinghai Tan & Abdullah Rasmita & Zhaowei Zhang & Xuran Dai & Ruihua He & Xiangbin Cai & Kenji Watanabe & Takashi Taniguchi & Hongbing Cai & Wei-bo Gao, 2025. "Enhanced coherence from correlated states in WSe2/MoS2 moiré heterobilayer," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    6. Ruoming Peng & Adina Ripin & Yusen Ye & Jiayi Zhu & Changming Wu & Seokhyeong Lee & Huan Li & Takashi Taniguchi & Kenji Watanabe & Ting Cao & Xiaodong Xu & Mo Li, 2022. "Long-range transport of 2D excitons with acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Qiuyang Li & Adam Alfrey & Jiaqi Hu & Nathanial Lydick & Eunice Paik & Bin Liu & Haiping Sun & Yang Lu & Ruoyu Wang & Stephen Forrest & Hui Deng, 2023. "Macroscopic transition metal dichalcogenides monolayers with uniformly high optical quality," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Feng Jin & Subhaskar Mandal & Jinqi Wu & Zhenhan Zhang & Wen Wen & Jiahao Ren & Baile Zhang & Timothy C. H. Liew & Qihua Xiong & Rui Su, 2024. "Observation of perovskite topological valley exciton-polaritons at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Juan B. Pérez-Sánchez & Joel Yuen-Zhou, 2025. "Radiative pumping vs vibrational relaxation of molecular polaritons: a bosonic mapping approach," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    10. Philip A. Thomas & Kishan S. Menghrajani & William L. Barnes, 2022. "All-optical control of phase singularities using strong light-matter coupling," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    11. Biswajit Datta & Mandeep Khatoniar & Prathmesh Deshmukh & Félix Thouin & Rezlind Bushati & Simone Liberato & Stephane Kena Cohen & Vinod M. Menon, 2022. "Highly nonlinear dipolar exciton-polaritons in bilayer MoS2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Kai Peng & Renjie Tao & Louis Haeberlé & Quanwei Li & Dafei Jin & Graham R. Fleming & Stéphane Kéna-Cohen & Xiang Zhang & Wei Bao, 2022. "Room-temperature polariton quantum fluids in halide perovskites," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Qiaoling Lin & Hanlin Fang & Alexei Kalaboukhov & Yuanda Liu & Yi Zhang & Moritz Fischer & Juntao Li & Joakim Hagel & Samuel Brem & Ermin Malic & Nicolas Stenger & Zhipei Sun & Martijn Wubs & Sanshui , 2024. "Moiré-engineered light-matter interactions in MoS2/WSe2 heterobilayers at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Juan Francisco Gonzalez Marin & Dmitrii Unuchek & Zhe Sun & Cheol Yeon Cheon & Fedele Tagarelli & Kenji Watanabe & Takashi Taniguchi & Andras Kis, 2022. "Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Yesenia A. García Jomaso & Brenda Vargas & David Ley Domínguez & Román J. Armenta-Rico & Huziel E. Sauceda & César L. Ordoñez-Romero & Hugo A. Lara-García & Arturo Camacho-Guardian & Giuseppe Pirrucci, 2024. "Intercavity polariton slows down dynamics in strongly coupled cavities," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Chenjia Mi & Gavin C. Gee & Chance W. Lander & Donghoon Shin & Matthew L. Atteberry & Novruz G. Akhmedov & Lamia Hidayatova & Jesse D. DiCenso & Wai Tak Yip & Bin Chen & Yihan Shao & Yitong Dong, 2025. "Towards non-blinking and photostable perovskite quantum dots," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    17. Xingchen Yan & Min Tang & Zhonghao Zhou & Libo Ma & Yana Vaynzof & Jiannian Yao & Haiyun Dong & Yong Sheng Zhao, 2025. "Topologically reconfigurable room-temperature polariton condensates from bound states in the continuum in organic metasurfaces," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    18. Mengwei Zhou & Ping Huang & Xiaoying Shang & Ruihuan Zhang & Wen Zhang & Zhiqing Shao & Shuo Zhang & Wei Zheng & Xueyuan Chen, 2024. "Ultrafast upconversion superfluorescence with a sub-2.5 ns lifetime at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Zehua Hu & Tanjung Krisnanda & Antonio Fieramosca & Jiaxin Zhao & Qianlu Sun & Yuzhong Chen & Haiyun Liu & Yuan Luo & Rui Su & Junyong Wang & Kenji Watanabe & Takashi Taniguchi & Goki Eda & Xiao Rensh, 2024. "Energy transfer driven brightening of MoS2 by ultrafast polariton relaxation in microcavity MoS2/hBN/WS2 heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Chenglin Han & Shida Fan & Hong-Tao Zhou & Kuan He & Yurou Jia & Changyou Li & Hongzhu Li & Xiao-Dong Yang & Li-Qun Chen & Tianzhi Yang & Cheng-Wei Qiu, 2025. "All-angle unidirectional flat-band acoustic metasurfaces," Nature Communications, Nature, vol. 16(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60553-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.