IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57738-1.html
   My bibliography  Save this article

Topologically reconfigurable room-temperature polariton condensates from bound states in the continuum in organic metasurfaces

Author

Listed:
  • Xingchen Yan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Min Tang

    (Leibniz Institute for Solid State and Materials Research Dresden)

  • Zhonghao Zhou

    (Chinese Academy of Sciences)

  • Libo Ma

    (Leibniz Institute for Solid State and Materials Research Dresden)

  • Yana Vaynzof

    (Leibniz Institute for Solid State and Materials Research Dresden
    Technische Universität Dresden)

  • Jiannian Yao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Haiyun Dong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yong Sheng Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

An exciton–polariton condensate is a state of matter with collective coherence leading to many fascinating macroscopic quantum effects. Recently, optical bound states in the continuum (BICs) have been demonstrated as peculiar topological states capable of imparting novel characteristics onto the polariton condensates. Organic semiconductors featuring robust Frenkel excitons and high physicochemical tunability potentially offer a promising platform to explore topologically engineering of BIC polariton condensates at room temperature. However, a universal physical mechanism for engineering organic BIC systems has remained elusive, hindering the demonstration of BIC polariton condensates with topologically tunable macroscopic quantum effects. Here we report topologically reconfigurable room-temperature polariton condensates by systematically engineering the BICs in organic semiconductor metasurfaces. Two-dimensional organic metasurfaces are designed to support two polariton BICs with different topological charges. The organic Frenkel excitons with large binding energies allow for non-equilibrium polariton condensation at BICs at room-temperature. By virtue of the excellent physicochemical tunability of organic materials, we further explore the dynamic topological engineering of polariton lasers by manipulating the BICs in situ. Our results fundamentally promote the innovative design and topological engineering of polaritonic materials and devices.

Suggested Citation

  • Xingchen Yan & Min Tang & Zhonghao Zhou & Libo Ma & Yana Vaynzof & Jiannian Yao & Haiyun Dong & Yong Sheng Zhao, 2025. "Topologically reconfigurable room-temperature polariton condensates from bound states in the continuum in organic metasurfaces," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57738-1
    DOI: 10.1038/s41467-025-57738-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57738-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57738-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Min-Soo Hwang & Hoo-Cheol Lee & Kyoung-Ho Kim & Kwang-Yong Jeong & Soon-Hong Kwon & Kirill Koshelev & Yuri Kivshar & Hong-Gyu Park, 2021. "Ultralow-threshold laser using super-bound states in the continuum," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Xuefan Yin & Jicheng Jin & Marin Soljačić & Chao Peng & Bo Zhen, 2020. "Observation of topologically enabled unidirectional guided resonances," Nature, Nature, vol. 580(7804), pages 467-471, April.
    3. Wenzhao Sun & Yilin Liu & Geyang Qu & Yubin Fan & Wei Dai & Yuhan Wang & Qinghai Song & Jiecai Han & Shumin Xiao, 2020. "Lead halide perovskite vortex microlasers," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    4. Ji Tang & Jian Zhang & Yuanchao Lv & Hong Wang & Fa Feng Xu & Chuang Zhang & Liaoxin Sun & Jiannian Yao & Yong Sheng Zhao, 2021. "Room temperature exciton–polariton Bose–Einstein condensation in organic single-crystal microribbon cavities," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. J. -M. Ménard & C. Poellmann & M. Porer & U. Leierseder & E. Galopin & A. Lemaître & A. Amo & J. Bloch & R. Huber, 2014. "Revealing the dark side of a bright exciton–polariton condensate," Nature Communications, Nature, vol. 5(1), pages 1-5, December.
    6. David Allemeier & Benjamin Isenhart & Ekraj Dahal & Yuki Tsuda & Tsukasa Yoshida & Matthew S. White, 2021. "Emergence and control of photonic band structure in stacked OLED microcavities," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    7. Jicheng Jin & Xuefan Yin & Liangfu Ni & Marin Soljačić & Bo Zhen & Chao Peng, 2019. "Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering," Nature, Nature, vol. 574(7779), pages 501-504, October.
    8. M. Dusel & S. Betzold & O. A. Egorov & S. Klembt & J. Ohmer & U. Fischer & S. Höfling & C. Schneider, 2020. "Room temperature organic exciton–polariton condensate in a lattice," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    9. Kou Yoshida & Junyi Gong & Alexander L. Kanibolotsky & Peter J. Skabara & Graham A. Turnbull & Ifor D. W. Samuel, 2023. "Electrically driven organic laser using integrated OLED pumping," Nature, Nature, vol. 621(7980), pages 746-752, September.
    10. S. Klembt & T. H. Harder & O. A. Egorov & K. Winkler & R. Ge & M. A. Bandres & M. Emmerling & L. Worschech & T. C. H. Liew & M. Segev & C. Schneider & S. Höfling, 2018. "Exciton-polariton topological insulator," Nature, Nature, vol. 562(7728), pages 552-556, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Jin & Subhaskar Mandal & Jinqi Wu & Zhenhan Zhang & Wen Wen & Jiahao Ren & Baile Zhang & Timothy C. H. Liew & Qihua Xiong & Rui Su, 2024. "Observation of perovskite topological valley exciton-polaritons at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Haoyu Qin & Shaohu Chen & Weixuan Zhang & Huizhen Zhang & Ruhao Pan & Junjie Li & Lei Shi & Jian Zi & Xiangdong Zhang, 2024. "Optical moiré bound states in the continuum," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Mengjie Wei & Wouter Verstraelen & Konstantinos Orfanakis & Arvydas Ruseckas & Timothy C. H. Liew & Ifor D. W. Samuel & Graham A. Turnbull & Hamid Ohadi, 2022. "Optically trapped room temperature polariton condensate in an organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Kristian Arjas & Jani Matti Taskinen & Rebecca Heilmann & Grazia Salerno & Päivi Törmä, 2024. "High topological charge lasing in quasicrystals," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Chloe F. Doiron & Igal Brener & Alexander Cerjan, 2022. "Realizing symmetry-guaranteed pairs of bound states in the continuum in metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Lujun Huang & Rong Jin & Chaobiao Zhou & Guanhai Li & Lei Xu & Adam Overvig & Fu Deng & Xiaoshuang Chen & Wei Lu & Andrea Alù & Andrey E. Miroshnichenko, 2023. "Ultrahigh-Q guided mode resonances in an All-dielectric metasurface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Pengcheng Huo & Wei Chen & Zixuan Zhang & Yanzeng Zhang & Mingze Liu & Peicheng Lin & Hui Zhang & Zhaoxian Chen & Henri Lezec & Wenqi Zhu & Amit Agrawal & Chao Peng & Yanqing Lu & Ting Xu, 2024. "Observation of spatiotemporal optical vortices enabled by symmetry-breaking slanted nanograting," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Daria Smirnova & Filipp Komissarenko & Anton Vakulenko & Svetlana Kiriushechkina & Ekaterina Smolina & Sriram Guddala & Monica Allen & Jeffery Allen & Andrea Alù & Alexander B. Khanikaev, 2024. "Polaritonic states trapped by topological defects," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Dmitrii Gromyko & Shu An & Sergey Gorelik & Jiahui Xu & Li Jun Lim & Henry Yit Loong Lee & Febiana Tjiptoharsono & Zhi-Kuang Tan & Cheng-Wei Qiu & Zhaogang Dong & Lin Wu, 2024. "Unidirectional Chiral Emission via Twisted Bi-layer Metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Alexander B. Khanikaev & Andrea Alù, 2024. "Topological photonics: robustness and beyond," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    11. Ming Kang & Ziying Zhang & Tong Wu & Xueqian Zhang & Quan Xu & Alex Krasnok & Jiaguang Han & Andrea Alù, 2022. "Coherent full polarization control based on bound states in the continuum," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    13. Song Han & Yunda Chua & Yongquan Zeng & Bofeng Zhu & Chongwu Wang & Bo Qiang & Yuhao Jin & Qian Wang & Lianhe Li & Alexander Giles Davies & Edmund Harold Linfield & Yidong Chong & Baile Zhang & Qi Jie, 2023. "Photonic Majorana quantum cascade laser with polarization-winding emission," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Tingting Wang & Dingyang Zhang & Shiqi Yang & Zhongchong Lin & Quan Chen & Jinbo Yang & Qihuang Gong & Zuxin Chen & Yu Ye & Wenjing Liu, 2023. "Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Anton Vakulenko & Svetlana Kiriushechkina & Daria Smirnova & Sriram Guddala & Filipp Komissarenko & Andrea Alù & Monica Allen & Jeffery Allen & Alexander B. Khanikaev, 2023. "Adiabatic topological photonic interfaces," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Ruixiang Chen & Ningning Liang & Tianrui Zhai, 2024. "Dual-color emissive OLED with orthogonal polarization modes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Juan B. Pérez-Sánchez & Joel Yuen-Zhou, 2025. "Radiative pumping vs vibrational relaxation of molecular polaritons: a bosonic mapping approach," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    18. Lucca Kühner & Luca Sortino & Rodrigo Berté & Juan Wang & Haoran Ren & Stefan A. Maier & Yuri Kivshar & Andreas Tittl, 2022. "Radial bound states in the continuum for polarization-invariant nanophotonics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Philip A. Thomas & Kishan S. Menghrajani & William L. Barnes, 2022. "All-optical control of phase singularities using strong light-matter coupling," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    20. Shengyan Liu & Hao Tong & Kejie Fang, 2022. "Optomechanical crystal with bound states in the continuum," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57738-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.