IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58163-0.html
   My bibliography  Save this article

Atomic-scale self-rearrangement of hetero-metastable phases into high-density single-atom catalysts for the oxygen evolution reaction

Author

Listed:
  • Quan Quan

    (City University of Hong Kong)

  • Yuxuan Zhang

    (City University of Hong Kong)

  • Haifan Li

    (City University of Hong Kong)

  • Wei Wang

    (City University of Hong Kong)

  • Pengshan Xie

    (City University of Hong Kong)

  • Dong Chen

    (City University of Hong Kong)

  • Weijun Wang

    (City University of Hong Kong)

  • You Meng

    (City University of Hong Kong
    City University of Hong Kong)

  • Di Yin

    (City University of Hong Kong)

  • Yezhan Li

    (City University of Hong Kong)

  • Dongyuan Song

    (Kyushu University)

  • Lijie Chen

    (China International Marine Containers Offshore Co., Ltd)

  • Shaohai Li

    (Tsinghua University
    National University of Singapore)

  • Cheng Yang

    (Tsinghua University)

  • Takeshi Yanagida

    (Kyushu University
    The University of Tokyo)

  • Chun-Yuen Wong

    (City University of Hong Kong)

  • SenPo Yip

    (Kyushu University)

  • Johnny C. Ho

    (City University of Hong Kong
    City University of Hong Kong
    Kyushu University)

Abstract

Maximizing metal-substrate interactions by self-reconstruction of coadjutant metastable phases can be a delicate strategy to obtain robust and efficient high-density single-atom catalysts. Here, we prepare high-density iridium atoms embedded ultrathin CoCeOOH nanosheets (CoCe-O-IrSA) by the electrochemistry-initiated synchronous evolution between metastable iridium intermediates and symmetry-breaking CoCe(OH)2 substrates. The CoCe-O-IrSA delivers an overpotential of 187 mV at 100 mA cm−2 and a steady lifespan of 1000 h at 500 mA cm−2 for oxygen evolution reaction. Furthermore, the CoCe-O-IrSA is applied as a robust anode in an anion-exchange-membrane water electrolysis cell for seawater splitting at 500 mA cm−2 for 150 h. Operando experimental and theoretical calculation results demonstrate that the reconstructed thermodynamically stable iridium single atoms act as highly active sites by regulating charge redistribution with strongly p-d-f orbital couplings, enabling electron transfer facilitated, the adsorption energies of intermediates optimized, and the surface reactivity of Co/Ce sites activated, leading to high oxygen evolution performance. These results open up an approach for engineering metastable phases to realize stable single-atom systems under ambient conditions toward efficient energy-conversion applications.

Suggested Citation

  • Quan Quan & Yuxuan Zhang & Haifan Li & Wei Wang & Pengshan Xie & Dong Chen & Weijun Wang & You Meng & Di Yin & Yezhan Li & Dongyuan Song & Lijie Chen & Shaohai Li & Cheng Yang & Takeshi Yanagida & Chu, 2025. "Atomic-scale self-rearrangement of hetero-metastable phases into high-density single-atom catalysts for the oxygen evolution reaction," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58163-0
    DOI: 10.1038/s41467-025-58163-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58163-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58163-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Wei & Hua Tang & Li Sheng & Ruyang Wang & Minghui Fan & Jiale Wan & Yuheng Wu & Zhirong Zhang & Shiming Zhou & Jie Zeng, 2024. "Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Kaipeng Liu & Xintian Zhao & Guoqing Ren & Tao Yang & Yujing Ren & Adam Fraser Lee & Yang Su & Xiaoli Pan & Jingcai Zhang & Zhiqiang Chen & Jingyi Yang & Xiaoyan Liu & Tong Zhou & Wei Xi & Jun Luo & C, 2020. "Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Kai Ling Zhou & Zelin Wang & Chang Bao Han & Xiaoxing Ke & Changhao Wang & Yuhong Jin & Qianqian Zhang & Jingbing Liu & Hao Wang & Hui Yan, 2021. "Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Hong Nhan Nong & Lorenz J. Falling & Arno Bergmann & Malte Klingenhof & Hoang Phi Tran & Camillo Spöri & Rik Mom & Janis Timoshenko & Guido Zichittella & Axel Knop-Gericke & Simone Piccinin & Javier P, 2020. "Key role of chemistry versus bias in electrocatalytic oxygen evolution," Nature, Nature, vol. 587(7834), pages 408-413, November.
    5. Yazhou Zhou & Xiafang Tao & Guangbo Chen & Ruihu Lu & Ding Wang & Ming-Xi Chen & Enquan Jin & Juan Yang & Hai-Wei Liang & Yan Zhao & Xinliang Feng & Akimitsu Narita & Klaus Müllen, 2020. "Multilayer stabilization for fabricating high-loading single-atom catalysts," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. Yiming Zhu & Jiaao Wang & Toshinari Koketsu & Matthias Kroschel & Jin-Ming Chen & Su-Yang Hsu & Graeme Henkelman & Zhiwei Hu & Peter Strasser & Jiwei Ma, 2022. "Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Fangqing Wang & Peichao Zou & Yangyang Zhang & Wenli Pan & Ying Li & Limin Liang & Cong Chen & Hui Liu & Shijian Zheng, 2023. "Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Zhirong Zhang & Chen Feng & Dongdi Wang & Shiming Zhou & Ruyang Wang & Sunpei Hu & Hongliang Li & Ming Zuo & Yuan Kong & Jun Bao & Jie Zeng, 2022. "Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Yiming Zhu & Malte Klingenhof & Chenlong Gao & Toshinari Koketsu & Gregor Weiser & Yecan Pi & Shangheng Liu & Lijun Sui & Jingrong Hou & Jiayi Li & Haomin Jiang & Limin Xu & Wei-Hsiang Huang & Chih-We, 2024. "Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Guangkai Li & Haeseong Jang & Shangguo Liu & Zijian Li & Min Gyu Kim & Qing Qin & Xien Liu & Jaephil Cho, 2022. "The synergistic effect of Hf-O-Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Abhaya K. Datye & Hua Guo, 2021. "Single atom catalysis poised to transition from an academic curiosity to an industrially relevant technology," Nature Communications, Nature, vol. 12(1), pages 1-3, December.
    12. Zhiping Zeng & Li Yong Gan & Hong Yang & Xiaozhi Su & Jiajian Gao & Wei Liu & Hiroaki Matsumoto & Jun Gong & Junming Zhang & Weizhen Cai & Zheye Zhang & Yibo Yan & Bin Liu & Peng Chen, 2021. "Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiming Zhu & Jiaao Wang & Toshinari Koketsu & Matthias Kroschel & Jin-Ming Chen & Su-Yang Hsu & Graeme Henkelman & Zhiwei Hu & Peter Strasser & Jiwei Ma, 2022. "Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Li, Dandan & Ding, Lei & Zhao, Qiang & Yang, Feng & Zhang, Sihang, 2024. "Controllable construction of bifunctional sites on Ir@Ni/NiO core/shell porous nanorod arrays for efficient water splitting," Applied Energy, Elsevier, vol. 356(C).
    3. Yiming Zhu & Malte Klingenhof & Chenlong Gao & Toshinari Koketsu & Gregor Weiser & Yecan Pi & Shangheng Liu & Lijun Sui & Jingrong Hou & Jiayi Li & Haomin Jiang & Limin Xu & Wei-Hsiang Huang & Chih-We, 2024. "Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Peiyu Ma & Jiawei Xue & Ji Li & Heng Cao & Ruyang Wang & Ming Zuo & Zhirong Zhang & Jun Bao, 2025. "Site-specific synergy in heterogeneous single atoms for efficient oxygen evolution," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    5. Yue Zhang & Xueqin Mu & Zhengyang Liu & Hongyu Zhao & Zechao Zhuang & Yifan Zhang & Shichun Mu & Suli Liu & Dingsheng Wang & Zhihui Dai, 2024. "Twin-distortion modulated ultra-low coordination PtRuNi-Ox catalyst for enhanced hydrogen production from chemical wastewater," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Xingbao Chen & Ruihu Lu & Chengbo Li & Wen Luo & Ruohan Yu & Jiexin Zhu & Lei Lv & Yuhang Dai & Shanhe Gong & Yazhou Zhou & Weiwei Xiong & Jiahao Wu & Hongwei Cai & Xinfei Wu & Zhaohui Deng & Boyu Xin, 2025. "Activating inert non-defect sites in Bi catalysts using tensile strain engineering for highly active CO2 electroreduction," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    8. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Felix T. Haase & Arno Bergmann & Travis E. Jones & Janis Timoshenko & Antonia Herzog & Hyo Sang Jeon & Clara Rettenmaier & Beatriz Roldan Cuenya, 2022. "Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction," Nature Energy, Nature, vol. 7(8), pages 765-773, August.
    10. Yuzhu Zhou & Quan Zhou & Hengjie Liu & Wenjie Xu & Zhouxin Wang & Sicong Qiao & Honghe Ding & Dongliang Chen & Junfa Zhu & Zeming Qi & Xiaojun Wu & Qun He & Li Song, 2023. "Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Xin Zhang & Haoyin Zhong & Qi Zhang & Qihan Zhang & Chao Wu & Junchen Yu & Yifan Ma & Hang An & Hao Wang & Yiming Zou & Caozheng Diao & Jingsheng Chen & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin , 2024. "High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Raj Pandya & Florian Dorchies & Davide Romanin & Jean-François Lemineur & Frédéric Kanoufi & Sylvain Gigan & Alex W. Chin & Hilton B. Aguiar & Alexis Grimaud, 2024. "Concurrent oxygen evolution reaction pathways revealed by high-speed compressive Raman imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Jiannan Du & Guokang Han & Wei Zhang & Lingfeng Li & Yuqi Yan & Yaoxuan Shi & Xue Zhang & Lin Geng & Zhijiang Wang & Yueping Xiong & Geping Yin & Chunyu Du, 2023. "CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Zhenhua Li & Xiaofan Li & Hua Zhou & Yan Xu & Si-Min Xu & Yue Ren & Yifan Yan & Jiangrong Yang & Kaiyue Ji & Li Li & Ming Xu & Mingfei Shao & Xianggui Kong & Xiaoming Sun & Haohong Duan, 2022. "Electrocatalytic synthesis of adipic acid coupled with H2 production enhanced by a ligand modification strategy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Jia Zhao & Ricardo Urrego-Ortiz & Nan Liao & Federico Calle-Vallejo & Jingshan Luo, 2024. "Rationally designed Ru catalysts supported on TiN for highly efficient and stable hydrogen evolution in alkaline conditions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Xu Luo & Hongyu Zhao & Xin Tan & Sheng Lin & Kesong Yu & Xueqin Mu & Zhenhua Tao & Pengxia Ji & Shichun Mu, 2024. "Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Jiayi Tang & Daqin Guan & Hengyue Xu & Leqi Zhao & Ushtar Arshad & Zijun Fang & Tianjiu Zhu & Manjin Kim & Chi-Wen Pao & Zhiwei Hu & Junjie Ge & Zongping Shao, 2025. "Undoped ruthenium oxide as a stable catalyst for the acidic oxygen evolution reaction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Shujuan Liu & Teng Li & Feng Shi & Haiying Ma & Bin Wang & Xingchao Dai & Xinjiang Cui, 2023. "Constructing multiple active sites in iron oxide catalysts for improving carbonylation reactions," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Qiyou Wang & Tao Luo & Xueying Cao & Yujie Gong & Yuxiang Liu & Yusen Xiao & Hongmei Li & Franz Gröbmeyer & Ying-Rui Lu & Ting-Shan Chan & Chao Ma & Kang Liu & Junwei Fu & Shiguo Zhang & Changxu Liu &, 2025. "Lanthanide single-atom catalysts for efficient CO2-to-CO electroreduction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58163-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.