IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58086-w.html
   My bibliography  Save this article

Antibacterial macrocyclic peptides reveal a distinct mode of BamA inhibition

Author

Listed:
  • Morgan E. Walker

    (Inc.)

  • Wei Zhu

    (Inc.)

  • Janine H. Peterson

    (National Institutes of Health)

  • Hao Wang

    (Inc.)

  • Jon Patteson

    (Inc.)

  • Aileen Soriano

    (Inc.)

  • Han Zhang

    (Inc.)

  • Todd Mayhood

    (Inc.)

  • Yan Hou

    (Inc.)

  • Samaneh Mesbahi-Vasey

    (Inc.)

  • Meigang Gu

    (Evotec Ltd.)

  • John Frost

    (Inc.)

  • Jun Lu

    (Inc.)

  • Jennifer Johnston

    (Inc.)

  • Christopher Hipolito

    (Inc.)

  • Songnian Lin

    (Inc.)

  • Ronald E. Painter

    (Inc.)

  • Daniel Klein

    (Inc.)

  • Abbas Walji

    (Inc.)

  • Adam Weinglass

    (Inc.)

  • Terri M. Kelly

    (Inc.)

  • Adrian Saldanha

    (Inc.)

  • Jeffrey Schubert

    (Inc.)

  • Harris D. Bernstein

    (National Institutes of Health)

  • Scott S. Walker

    (Inc.)

Abstract

Outer membrane proteins (OMPs) produced by Gram-negative bacteria contain a cylindrical amphipathic β-sheet (“β-barrel”) that functions as a membrane spanning domain. The assembly (folding and membrane insertion) of OMPs is mediated by the heterooligomeric β-barrel assembly machine (BAM). The central BAM subunit (BamA) is an attractive antibacterial target because its structure and cell surface localization are conserved, it catalyzes an essential reaction, and potent bactericidal compounds that inhibit its activity have been described. Here we utilize mRNA display to discover cyclic peptides that bind to Escherichia coli BamA with high affinity. We describe three peptides that arrest the growth of BAM deficient E. coli strains, inhibit OMP assembly in live cells and in vitro, and bind to unique sites within the BamA β-barrel lumen. Remarkably, we find that if the peptides are added to cultures after a slowly assembling OMP mutant binds to BamA, they accelerate its biogenesis. The data strongly suggest that the peptides trap BamA in conformations that block the initiation of OMP assembly but favor a later assembly step. Molecular dynamics simulations provide further evidence that the peptides bind stably to BamA and function by a previously undescribed mechanism.

Suggested Citation

  • Morgan E. Walker & Wei Zhu & Janine H. Peterson & Hao Wang & Jon Patteson & Aileen Soriano & Han Zhang & Todd Mayhood & Yan Hou & Samaneh Mesbahi-Vasey & Meigang Gu & John Frost & Jun Lu & Jennifer Jo, 2025. "Antibacterial macrocyclic peptides reveal a distinct mode of BamA inhibition," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58086-w
    DOI: 10.1038/s41467-025-58086-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58086-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58086-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoshiki Tanaka & Christopher J. Hipolito & Andrés D. Maturana & Koichi Ito & Teruo Kuroda & Takashi Higuchi & Takayuki Katoh & Hideaki E. Kato & Motoyuki Hattori & Kaoru Kumazaki & Tomoya Tsukazaki & , 2013. "Structural basis for the drug extrusion mechanism by a MATE multidrug transporter," Nature, Nature, vol. 496(7444), pages 247-251, April.
    2. repec:plo:pcbi00:1008355 is not listed on IDEAS
    3. Runrun Wu & Jeremy W. Bakelar & Karl Lundquist & Zijian Zhang & Katie M. Kuo & David Ryoo & Yui Tik Pang & Chen Sun & Tommi White & Thomas Klose & Wen Jiang & James C. Gumbart & Nicholas Noinaj, 2021. "Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    4. Chongrong Shen & Shenghai Chang & Qinghua Luo & Kevin Chun Chan & Zhibo Zhang & Bingnan Luo & Teng Xie & Guangwen Lu & Xiaofeng Zhu & Xiawei Wei & Changjiang Dong & Ruhong Zhou & Xing Zhang & Xiaodi T, 2023. "Structural basis of BAM-mediated outer membrane β-barrel protein assembly," Nature, Nature, vol. 617(7959), pages 185-193, May.
    5. Dawei Sun & Kelly M. Storek & Dimitry Tegunov & Ying Yang & Christopher P. Arthur & Matthew Johnson & John G. Quinn & Weijing Liu & Guanghui Han & Hany S. Girgis & Mary Kate Alexander & Austin K. Murc, 2024. "The discovery and structural basis of two distinct state-dependent inhibitors of BamA," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Irina V. Mikheyeva & Jiawei Sun & Kerwyn Casey Huang & Thomas J. Silhavy, 2023. "Mechanism of outer membrane destabilization by global reduction of protein content," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Hundeep Kaur & Roman P. Jakob & Jan K. Marzinek & Robert Green & Yu Imai & Jani Reddy Bolla & Elia Agustoni & Carol V. Robinson & Peter J. Bond & Kim Lewis & Timm Maier & Sebastian Hiller, 2021. "The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase," Nature, Nature, vol. 593(7857), pages 125-129, May.
    8. Anatol Luther & Matthias Urfer & Michael Zahn & Maik Müller & Shuang-Yan Wang & Milon Mondal & Alessandra Vitale & Jean-Baptiste Hartmann & Timothy Sharpe & Fabio Lo Monte & Harsha Kocherla & Elizabet, 2019. "Chimeric peptidomimetic antibiotics against Gram-negative bacteria," Nature, Nature, vol. 576(7787), pages 452-458, December.
    9. Yinghong Gu & Huanyu Li & Haohao Dong & Yi Zeng & Zhengyu Zhang & Neil G. Paterson & Phillip J. Stansfeld & Zhongshan Wang & Yizheng Zhang & Wenjian Wang & Changjiang Dong, 2016. "Structural basis of outer membrane protein insertion by the BAM complex," Nature, Nature, vol. 531(7592), pages 64-69, March.
    10. Nicholas Noinaj & Adam J. Kuszak & James C. Gumbart & Petra Lukacik & Hoshing Chang & Nicole C. Easley & Trevor Lithgow & Susan K. Buchanan, 2013. "Structural insight into the biogenesis of β-barrel membrane proteins," Nature, Nature, vol. 501(7467), pages 385-390, September.
    11. Anatol Luther & Matthias Urfer & Michael Zahn & Maik Müller & Shuang-Yan Wang & Milon Mondal & Alessandra Vitale & Jean-Baptiste Hartmann & Timothy Sharpe & Fabio Lo Monte & Harsha Kocherla & Elizabet, 2019. "Author Correction: Chimeric peptidomimetic antibiotics against Gram-negative bacteria," Nature, Nature, vol. 576(7786), pages 5-5, December.
    12. Yu Imai & Kirsten J. Meyer & Akira Iinishi & Quentin Favre-Godal & Robert Green & Sylvie Manuse & Mariaelena Caboni & Miho Mori & Samantha Niles & Meghan Ghiglieri & Chandrashekhar Honrao & Xiaoyu Ma , 2019. "A new antibiotic selectively kills Gram-negative pathogens," Nature, Nature, vol. 576(7787), pages 459-464, December.
    13. Matthew T. Doyle & Harris D. Bernstein, 2019. "Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    14. David Tomasek & Shaun Rawson & James Lee & Joseph S. Wzorek & Stephen C. Harrison & Zongli Li & Daniel Kahne, 2020. "Structure of a nascent membrane protein as it folds on the BAM complex," Nature, Nature, vol. 583(7816), pages 473-478, July.
    15. Matthew G. Iadanza & Anna J. Higgins & Bob Schiffrin & Antonio N. Calabrese & David J. Brockwell & Alison E. Ashcroft & Sheena E. Radford & Neil A. Ranson, 2016. "Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM," Nature Communications, Nature, vol. 7(1), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bob Schiffrin & Joel A. Crossley & Martin Walko & Jonathan M. Machin & G. Nasir Khan & Iain W. Manfield & Andrew J. Wilson & David J. Brockwell & Tomas Fessl & Antonio N. Calabrese & Sheena E. Radford, 2024. "Dual client binding sites in the ATP-independent chaperone SurA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Katherine L. Fenn & Jim E. Horne & Joel A. Crossley & Nils Böhringer & Romany J. Horne & Till F. Schäberle & Antonio N. Calabrese & Sheena E. Radford & Neil A. Ranson, 2024. "Outer membrane protein assembly mediated by BAM-SurA complexes," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Dawei Sun & Kelly M. Storek & Dimitry Tegunov & Ying Yang & Christopher P. Arthur & Matthew Johnson & John G. Quinn & Weijing Liu & Guanghui Han & Hany S. Girgis & Mary Kate Alexander & Austin K. Murc, 2024. "The discovery and structural basis of two distinct state-dependent inhibitors of BamA," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Runrun Wu & Jeremy W. Bakelar & Karl Lundquist & Zijian Zhang & Katie M. Kuo & David Ryoo & Yui Tik Pang & Chen Sun & Tommi White & Thomas Klose & Wen Jiang & James C. Gumbart & Nicholas Noinaj, 2021. "Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Xu Wang & Sarah B. Nyenhuis & Harris D. Bernstein, 2024. "The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Sarah E. Hanson & Tyrone Dowdy & Mioara Larion & Matthew Thomas Doyle & Harris D. Bernstein, 2024. "The patatin-like protein PlpD forms structurally dynamic homodimers in the Pseudomonas aeruginosa outer membrane," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Parthasarathi Rath & Adrian Hermann & Ramona Schaefer & Elia Agustoni & Jean-Marie Vonach & Martin Siegrist & Christian Miscenic & Andreas Tschumi & Doris Roth & Christoph Bieniossek & Sebastian Hille, 2023. "High-throughput screening of BAM inhibitors in native membrane environment," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Christopher Jonkergouw & Ngong Kodiah Beyeh & Ekaterina Osmekhina & Katarzyna Leskinen & S. Maryamdokht Taimoory & Dmitrii Fedorov & Eduardo Anaya-Plaza & Mauri A. Kostiainen & John F. Trant & Robin H, 2023. "Repurposing host-guest chemistry to sequester virulence and eradicate biofilms in multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Yui Kanaoka & Takaharu Mori & Wataru Nagaike & Seira Itaya & Yuto Nonaka & Hidetaka Kohga & Takamitsu Haruyama & Yasunori Sugano & Ryoji Miyazaki & Muneyoshi Ichikawa & Takayuki Uchihashi & Tomoya Tsu, 2025. "AFM observation of protein translocation mediated by one unit of SecYEG-SecA complex," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    10. Elvin Maharramov & Márton Simon Czikkely & Petra Szili & Zoltán Farkas & Gábor Grézal & Lejla Daruka & Eszter Kurkó & Léna Mészáros & Andreea Daraba & Terézia Kovács & Bence Bognár & Szilvia Juhász & , 2025. "Exploring the principles behind antibiotics with limited resistance," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    11. Mathieu Botte & Dongchun Ni & Stephan Schenck & Iwan Zimmermann & Mohamed Chami & Nicolas Bocquet & Pascal Egloff & Denis Bucher & Matilde Trabuco & Robert K. Y. Cheng & Janine D. Brunner & Markus A. , 2022. "Cryo-EM structures of a LptDE transporter in complex with Pro-macrobodies offer insight into lipopolysaccharide translocation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Christopher J. Barden & Fan Wu & J. Pedro Fernandez-Murray & Erhu Lu & Shengguo Sun & Marcia M. Taylor & Annette L. Rushton & Jason Williams & Mahtab Tavasoli & Autumn Meek & Alla Siva Reddy & Lisa M., 2024. "Computer-aided drug design to generate a unique antibiotic family," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Yunmin Yang & Binbin Chu & Jiayi Cheng & Jiali Tang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Seav-Ly Tran & Lucie Lebreuilly & Delphine Cormontagne & Samantha Samson & Thu Ba Tô & Marie Stosskopf & Rozenn Dervyn & Anne Grießhammer & Jacobo Cuesta-Zuluaga & Lisa Maier & Thierry Naas & Simona M, 2025. "An anti-virulence drug targeting the evolvability protein Mfd protects against infections with antimicrobial resistant ESKAPE pathogens," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    15. Han Ba Bui & Satoshi Watanabe & Norimichi Nomura & Kehong Liu & Tomoko Uemura & Michio Inoue & Akihisa Tsutsumi & Hiroyuki Fujita & Kengo Kinoshita & Yukinari Kato & So Iwata & Masahide Kikkawa & Kenj, 2023. "Cryo-EM structures of human zinc transporter ZnT7 reveal the mechanism of Zn2+ uptake into the Golgi apparatus," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Chih-Wei Chen & Nadja Leimer & Egor A. Syroegin & Clémence Dunand & Zackery P. Bulman & Kim Lewis & Yury S. Polikanov & Maxim S. Svetlov, 2023. "Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Zhenyan Zhang & Qi Zhang & Tingzhang Wang & Nuohan Xu & Tao Lu & Wenjie Hong & Josep Penuelas & Michael Gillings & Meixia Wang & Wenwen Gao & Haifeng Qian, 2022. "Assessment of global health risk of antibiotic resistance genes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Matteo Tassinari & Marta Rudzite & Alain Filloux & Harry H. Low, 2023. "Assembly mechanism of a Tad secretion system secretin-pilotin complex," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Anaïs Menny & Marie V. Lukassen & Emma C. Couves & Vojtech Franc & Albert J. R. Heck & Doryen Bubeck, 2021. "Structural basis of soluble membrane attack complex packaging for clearance," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    20. Ruihuan Yang & Qing Shi & Tingting Huang & Yichao Yan & Shengzhang Li & Yuan Fang & Ying Li & Linlin Liu & Longyu Liu & Xiaozheng Wang & Yongzheng Peng & Jiangbo Fan & Lifang Zou & Shuangjun Lin & Gon, 2023. "The natural pyrazolotriazine pseudoiodinine from Pseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58086-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.