IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56934-3.html
   My bibliography  Save this article

Exploring the principles behind antibiotics with limited resistance

Author

Listed:
  • Elvin Maharramov

    (HUN-REN Biological Research Centre Szeged
    University of Szeged)

  • Márton Simon Czikkely

    (HUN-REN Biological Research Centre Szeged
    University of Szeged
    University of Szeged)

  • Petra Szili

    (HUN-REN Biological Research Centre Szeged)

  • Zoltán Farkas

    (HUN-REN Biological Research Centre Szeged)

  • Gábor Grézal

    (HUN-REN Biological Research Centre Szeged
    HCEMM-BRC Metabolic Systems Biology Group)

  • Lejla Daruka

    (HUN-REN Biological Research Centre Szeged)

  • Eszter Kurkó

    (HUN-REN Biological Research Centre Szeged)

  • Léna Mészáros

    (Budapesti út 9)

  • Andreea Daraba

    (HUN-REN Biological Research Centre Szeged)

  • Terézia Kovács

    (HUN-REN Biological Research Centre Szeged
    HCEMM-BRC Pharmacodynamic Drug Interaction Research Group)

  • Bence Bognár

    (HUN-REN Biological Research Centre Szeged
    University of Szeged
    HCEMM-BRC Pharmacodynamic Drug Interaction Research Group)

  • Szilvia Juhász

    (HUN-REN Biological Research Centre Szeged
    Budapesti út 9)

  • Balázs Papp

    (HUN-REN Biological Research Centre Szeged
    HCEMM-BRC Metabolic Systems Biology Group)

  • Viktória Lázár

    (HUN-REN Biological Research Centre Szeged
    HCEMM-BRC Pharmacodynamic Drug Interaction Research Group)

  • Csaba Pál

    (HUN-REN Biological Research Centre Szeged)

Abstract

Antibiotics that target multiple cellular functions are anticipated to be less prone to bacterial resistance. Here we hypothesize that while dual targeting is crucial, it is not sufficient in preventing resistance. Only those antibiotics that simultaneously target membrane integrity and block another cellular pathway display reduced resistance development. To test the hypothesis, we focus on three antibiotic candidates, POL7306, Tridecaptin M152-P3 and SCH79797, all of which fulfill the above criteria. Here we show that resistance evolution against these antibiotics is limited in ESKAPE pathogens, including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa, while dual-target topoisomerase antibiotics are prone to resistance. We discover several mechanisms restricting resistance. First, de novo mutations result in only a limited elevation in resistance, including those affecting the molecular targets and efflux pumps. Second, resistance is inaccessible through gene amplification. Third, functional metagenomics reveal that mobile resistance genes are rare in human gut, soil and clinical microbiomes. Finally, we detect rapid eradication of bacterial populations upon toxic exposure to membrane targeting antibiotics. We conclude that resistance mechanisms commonly found in natural bacterial pathogens provide only limited protection to these antibiotics. Our work provides guidelines for the future development of antibiotics.

Suggested Citation

  • Elvin Maharramov & Márton Simon Czikkely & Petra Szili & Zoltán Farkas & Gábor Grézal & Lejla Daruka & Eszter Kurkó & Léna Mészáros & Andreea Daraba & Terézia Kovács & Bence Bognár & Szilvia Juhász & , 2025. "Exploring the principles behind antibiotics with limited resistance," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56934-3
    DOI: 10.1038/s41467-025-56934-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56934-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56934-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fabian Grein & Anna Müller & Katharina M. Scherer & Xinliang Liu & Kevin C. Ludwig & Anna Klöckner & Manuel Strach & Hans-Georg Sahl & Ulrich Kubitscheck & Tanja Schneider, 2020. "Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Losee L. Ling & Tanja Schneider & Aaron J. Peoples & Amy L. Spoering & Ina Engels & Brian P. Conlon & Anna Mueller & Till F. Schäberle & Dallas E. Hughes & Slava Epstein & Michael Jones & Linos Lazari, 2015. "A new antibiotic kills pathogens without detectable resistance," Nature, Nature, vol. 517(7535), pages 455-459, January.
    3. Elsa Germain & Paul Guiraud & Deborah Byrne & Badreddine Douzi & Meriem Djendli & Etienne Maisonneuve, 2019. "YtfK activates the stringent response by triggering the alarmone synthetase SpoT in Escherichia coli," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    4. Anatol Luther & Matthias Urfer & Michael Zahn & Maik Müller & Shuang-Yan Wang & Milon Mondal & Alessandra Vitale & Jean-Baptiste Hartmann & Timothy Sharpe & Fabio Lo Monte & Harsha Kocherla & Elizabet, 2019. "Chimeric peptidomimetic antibiotics against Gram-negative bacteria," Nature, Nature, vol. 576(7787), pages 452-458, December.
    5. Viktória Lázár & Olga Snitser & Daniel Barkan & Roy Kishony, 2022. "Antibiotic combinations reduce Staphylococcus aureus clearance," Nature, Nature, vol. 610(7932), pages 540-546, October.
    6. Anatol Luther & Matthias Urfer & Michael Zahn & Maik Müller & Shuang-Yan Wang & Milon Mondal & Alessandra Vitale & Jean-Baptiste Hartmann & Timothy Sharpe & Fabio Lo Monte & Harsha Kocherla & Elizabet, 2019. "Author Correction: Chimeric peptidomimetic antibiotics against Gram-negative bacteria," Nature, Nature, vol. 576(7786), pages 5-5, December.
    7. Réka Spohn & Lejla Daruka & Viktória Lázár & Ana Martins & Fanni Vidovics & Gábor Grézal & Orsolya Méhi & Bálint Kintses & Mónika Számel & Pramod K. Jangir & Bálint Csörgő & Ádám Györkei & Zoltán Bódi, 2019. "Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher J. Barden & Fan Wu & J. Pedro Fernandez-Murray & Erhu Lu & Shengguo Sun & Marcia M. Taylor & Annette L. Rushton & Jason Williams & Mahtab Tavasoli & Autumn Meek & Alla Siva Reddy & Lisa M., 2024. "Computer-aided drug design to generate a unique antibiotic family," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Runrun Wu & Jeremy W. Bakelar & Karl Lundquist & Zijian Zhang & Katie M. Kuo & David Ryoo & Yui Tik Pang & Chen Sun & Tommi White & Thomas Klose & Wen Jiang & James C. Gumbart & Nicholas Noinaj, 2021. "Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Christopher Jonkergouw & Ngong Kodiah Beyeh & Ekaterina Osmekhina & Katarzyna Leskinen & S. Maryamdokht Taimoory & Dmitrii Fedorov & Eduardo Anaya-Plaza & Mauri A. Kostiainen & John F. Trant & Robin H, 2023. "Repurposing host-guest chemistry to sequester virulence and eradicate biofilms in multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Parthasarathi Rath & Adrian Hermann & Ramona Schaefer & Elia Agustoni & Jean-Marie Vonach & Martin Siegrist & Christian Miscenic & Andreas Tschumi & Doris Roth & Christoph Bieniossek & Sebastian Hille, 2023. "High-throughput screening of BAM inhibitors in native membrane environment," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Dawei Sun & Kelly M. Storek & Dimitry Tegunov & Ying Yang & Christopher P. Arthur & Matthew Johnson & John G. Quinn & Weijing Liu & Guanghui Han & Hany S. Girgis & Mary Kate Alexander & Austin K. Murc, 2024. "The discovery and structural basis of two distinct state-dependent inhibitors of BamA," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Morgan E. Walker & Wei Zhu & Janine H. Peterson & Hao Wang & Jon Patteson & Aileen Soriano & Han Zhang & Todd Mayhood & Yan Hou & Samaneh Mesbahi-Vasey & Meigang Gu & John Frost & Jun Lu & Jennifer Jo, 2025. "Antibacterial macrocyclic peptides reveal a distinct mode of BamA inhibition," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    7. Mathieu Botte & Dongchun Ni & Stephan Schenck & Iwan Zimmermann & Mohamed Chami & Nicolas Bocquet & Pascal Egloff & Denis Bucher & Matilde Trabuco & Robert K. Y. Cheng & Janine D. Brunner & Markus A. , 2022. "Cryo-EM structures of a LptDE transporter in complex with Pro-macrobodies offer insight into lipopolysaccharide translocation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Kalinga Pavan T. Silva & Ganesh Sundar & Anupama Khare, 2023. "Efflux pump gene amplifications bypass necessity of multiple target mutations for resistance against dual-targeting antibiotic," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Josh L Espinoza & Chris L Dupont & Aubrie O’Rourke & Sinem Beyhan & Pavel Morales & Amy Spoering & Kirsten J Meyer & Agnes P Chan & Yongwook Choi & William C Nierman & Kim Lewis & Karen E Nelson, 2021. "Predicting antimicrobial mechanism-of-action from transcriptomes: A generalizable explainable artificial intelligence approach," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-25, March.
    10. Seav-Ly Tran & Lucie Lebreuilly & Delphine Cormontagne & Samantha Samson & Thu Ba Tô & Marie Stosskopf & Rozenn Dervyn & Anne Grießhammer & Jacobo Cuesta-Zuluaga & Lisa Maier & Thierry Naas & Simona M, 2025. "An anti-virulence drug targeting the evolvability protein Mfd protects against infections with antimicrobial resistant ESKAPE pathogens," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    11. Martin F. Peter & Jan A. Ruland & Yeojin Kim & Philipp Hendricks & Niels Schneberger & Jan Peter Siebrasse & Gavin H. Thomas & Ulrich Kubitscheck & Gregor Hagelueken, 2024. "Conformational coupling of the sialic acid TRAP transporter HiSiaQM with its substrate binding protein HiSiaP," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Xinghong Zhao & Xinyi Zhong & Shinong Yang & Jiarong Deng & Kai Deng & Zhengqun Huang & Yuanfeng Li & Zhongqiong Yin & Yong Liu & Jakob H. Viel & Hongping Wan, 2024. "Guiding antibiotics towards their target using bacteriophage proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Zhuo Cheng & Bei-Bei He & Kangfan Lei & Ying Gao & Yuqi Shi & Zheng Zhong & Hongyan Liu & Runze Liu & Haili Zhang & Song Wu & Wenxuan Zhang & Xiaoyu Tang & Yong-Xin Li, 2024. "Rule-based omics mining reveals antimicrobial macrocyclic peptides against drug-resistant clinical isolates," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Nicole M. Revie & Kali R. Iyer & Michelle E. Maxson & Jiabao Zhang & Su Yan & Caroline M. Fernandes & Kirsten J. Meyer & Xuefei Chen & Iwona Skulska & Meea Fogal & Hiram Sanchez & Saif Hossain & Sheen, 2022. "Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    15. Elizabeth M. Bach & Kelly S. Ramirez & Tandra D. Fraser & Diana H. Wall, 2020. "Soil Biodiversity Integrates Solutions for a Sustainable Future," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    16. Elizabeth V. K. Ledger & Stéphane Mesnage & Andrew M. Edwards, 2022. "Human serum triggers antibiotic tolerance in Staphylococcus aureus," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Martin F. Peter & Jan A. Ruland & Peer Depping & Niels Schneberger & Emmanuele Severi & Jonas Moecking & Karl Gatterdam & Sarah Tindall & Alexandre Durand & Veronika Heinz & Jan Peter Siebrasse & Paul, 2022. "Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Chih-Wei Chen & Nadja Leimer & Egor A. Syroegin & Clémence Dunand & Zackery P. Bulman & Kim Lewis & Yury S. Polikanov & Maxim S. Svetlov, 2023. "Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Yanling You & Xu Yu & Junjie Jiang & Zhixin Chen & Ya-Xuan Zhu & Yihan Chen & Han Lin & Jianlin Shi, 2025. "Bacterial cell wall-specific nanomedicine for the elimination of Staphylococcus aureus and Pseudomonas aeruginosa through electron-mechanical intervention," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    20. Sean Cavany & Stella Nanyonga & Cathrin Hauk & Cherry Lim & Joel Tarning & Benn Sartorius & Christiane Dolecek & Céline Caillet & Paul N. Newton & Ben S. Cooper, 2023. "The uncertain role of substandard and falsified medicines in the emergence and spread of antimicrobial resistance," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56934-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.