IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58282-8.html
   My bibliography  Save this article

An anti-virulence drug targeting the evolvability protein Mfd protects against infections with antimicrobial resistant ESKAPE pathogens

Author

Listed:
  • Seav-Ly Tran

    (Université Paris-Saclay, INRAE, Micalis Institute)

  • Lucie Lebreuilly

    (Université Paris-Saclay, INRAE, Micalis Institute)

  • Delphine Cormontagne

    (Université Paris-Saclay, INRAE, Micalis Institute)

  • Samantha Samson

    (Université Paris-Saclay, INRAE, Micalis Institute
    Université Paris-Saclay, INRAE, MaIAGE)

  • Thu Ba Tô

    (Université Paris-Saclay, INRAE, Micalis Institute
    Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay)

  • Marie Stosskopf

    (Université Paris-Saclay, INRAE, Micalis Institute)

  • Rozenn Dervyn

    (Université Paris-Saclay, INRAE, Micalis Institute)

  • Anne Grießhammer

    (University of Tübingen
    University of Tübingen)

  • Jacobo Cuesta-Zuluaga

    (University of Tübingen
    University of Tübingen)

  • Lisa Maier

    (University of Tübingen
    University of Tübingen)

  • Thierry Naas

    (INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Assistance Publique/Hôpitaux de Paris, French NRC for Carbapenemase-Producing Enterobacterales. Bicêtre Hospital)

  • Simona Mura

    (Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay)

  • Didier Rognan

    (Université de Strasbourg, CNRS, UMR 7200 LiT)

  • Julien Nicolas

    (Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay)

  • Gwenaëlle André

    (Université Paris-Saclay, INRAE, MaIAGE)

  • Nalini Ramarao

    (Université Paris-Saclay, INRAE, Micalis Institute)

Abstract

The increasing incidence of antibiotic resistance and the decline in the discovery of novel antibiotics have resulted in a global health crisis, particularly, for the treatment of infections caused by Gram-negative bacteria, for which therapeutic dead-ends are alarming. Here, we identify and characterize a molecule, NM102, that displays antimicrobial activity exclusively in the context of infection. NM102 inhibits the activity of the non-essential Mutation Frequency Decline (Mfd) protein by competing with ATP binding to its active site. Inhibition of Mfd by NM102 sensitizes pathogenic bacteria to the host immune response and blocks infections caused by the clinically-relevant bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa, without inducing host toxicity. Finally, NM102 inhibits the mutation and evolvability function of Mfd, thus reducing the bacterial capacity to develop antimicrobial resistance. These data provide a potential roadmap for the development of drugs to combat antimicrobial resistance.

Suggested Citation

  • Seav-Ly Tran & Lucie Lebreuilly & Delphine Cormontagne & Samantha Samson & Thu Ba Tô & Marie Stosskopf & Rozenn Dervyn & Anne Grießhammer & Jacobo Cuesta-Zuluaga & Lisa Maier & Thierry Naas & Simona M, 2025. "An anti-virulence drug targeting the evolvability protein Mfd protects against infections with antimicrobial resistant ESKAPE pathogens," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58282-8
    DOI: 10.1038/s41467-025-58282-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58282-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58282-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Losee L. Ling & Tanja Schneider & Aaron J. Peoples & Amy L. Spoering & Ina Engels & Brian P. Conlon & Anna Mueller & Till F. Schäberle & Dallas E. Hughes & Slava Epstein & Michael Jones & Linos Lazari, 2015. "A new antibiotic kills pathogens without detectable resistance," Nature, Nature, vol. 517(7535), pages 455-459, January.
    2. Lisa Maier & Camille V. Goemans & Jakob Wirbel & Michael Kuhn & Claudia Eberl & Mihaela Pruteanu & Patrick Müller & Sarela Garcia-Santamarina & Elisabetta Cacace & Boyao Zhang & Cordula Gekeler & Tisy, 2021. "Unravelling the collateral damage of antibiotics on gut bacteria," Nature, Nature, vol. 599(7883), pages 120-124, November.
    3. Christiane Brugger & Cheng Zhang & Margaret M. Suhanovsky & David D. Kim & Amy N. Sinclair & Dmitry Lyumkis & Alexandra M. Deaconescu, 2020. "Molecular determinants for dsDNA translocation by the transcription-repair coupling and evolvability factor Mfd," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Losee L. Ling & Tanja Schneider & Aaron J. Peoples & Amy L. Spoering & Ina Engels & Brian P. Conlon & Anna Mueller & Till F. Schäberle & Dallas E. Hughes & Slava Epstein & Michael Jones & Linos Lazari, 2015. "Erratum: A new antibiotic kills pathogens without detectable resistance," Nature, Nature, vol. 520(7547), pages 388-388, April.
    5. Yu Imai & Kirsten J. Meyer & Akira Iinishi & Quentin Favre-Godal & Robert Green & Sylvie Manuse & Mariaelena Caboni & Miho Mori & Samantha Niles & Meghan Ghiglieri & Chandrashekhar Honrao & Xiaoyu Ma , 2019. "A new antibiotic selectively kills Gram-negative pathogens," Nature, Nature, vol. 576(7787), pages 459-464, December.
    6. Goran Kokic & Felix R. Wagner & Aleksandar Chernev & Henning Urlaub & Patrick Cramer, 2021. "Structural basis of human transcription–DNA repair coupling," Nature, Nature, vol. 598(7880), pages 368-372, October.
    7. Joanne Kanaan & Saurabh Raj & Laurence Decourty & Cosmin Saveanu & Vincent Croquette & Hervé Le Hir, 2018. "UPF1-like helicase grip on nucleic acids dictates processivity," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuo Cheng & Bei-Bei He & Kangfan Lei & Ying Gao & Yuqi Shi & Zheng Zhong & Hongyan Liu & Runze Liu & Haili Zhang & Song Wu & Wenxuan Zhang & Xiaoyu Tang & Yong-Xin Li, 2024. "Rule-based omics mining reveals antimicrobial macrocyclic peptides against drug-resistant clinical isolates," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Kalinga Pavan T. Silva & Ganesh Sundar & Anupama Khare, 2023. "Efflux pump gene amplifications bypass necessity of multiple target mutations for resistance against dual-targeting antibiotic," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Christopher J. Barden & Fan Wu & J. Pedro Fernandez-Murray & Erhu Lu & Shengguo Sun & Marcia M. Taylor & Annette L. Rushton & Jason Williams & Mahtab Tavasoli & Autumn Meek & Alla Siva Reddy & Lisa M., 2024. "Computer-aided drug design to generate a unique antibiotic family," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Xinghong Zhao & Xinyi Zhong & Shinong Yang & Jiarong Deng & Kai Deng & Zhengqun Huang & Yuanfeng Li & Zhongqiong Yin & Yong Liu & Jakob H. Viel & Hongping Wan, 2024. "Guiding antibiotics towards their target using bacteriophage proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Nicole M. Revie & Kali R. Iyer & Michelle E. Maxson & Jiabao Zhang & Su Yan & Caroline M. Fernandes & Kirsten J. Meyer & Xuefei Chen & Iwona Skulska & Meea Fogal & Hiram Sanchez & Saif Hossain & Sheen, 2022. "Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Yanling You & Xu Yu & Junjie Jiang & Zhixin Chen & Ya-Xuan Zhu & Yihan Chen & Han Lin & Jianlin Shi, 2025. "Bacterial cell wall-specific nanomedicine for the elimination of Staphylococcus aureus and Pseudomonas aeruginosa through electron-mechanical intervention," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    7. Bin Ma & Caiyu Lu & Yiling Wang & Jingwen Yu & Kankan Zhao & Ran Xue & Hao Ren & Xiaofei Lv & Ronghui Pan & Jiabao Zhang & Yongguan Zhu & Jianming Xu, 2023. "A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Hiroshi Hamamoto & Suresh Panthee & Atmika Paudel & Kenichi Ishii & Jyunichiro Yasukawa & Jie Su & Atsushi Miyashita & Hiroaki Itoh & Kotaro Tokumoto & Masayuki Inoue & Kazuhisa Sekimizu, 2021. "Serum apolipoprotein A-I potentiates the therapeutic efficacy of lysocin E against Staphylococcus aureus," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Runrun Wu & Jeremy W. Bakelar & Karl Lundquist & Zijian Zhang & Katie M. Kuo & David Ryoo & Yui Tik Pang & Chen Sun & Tommi White & Thomas Klose & Wen Jiang & James C. Gumbart & Nicholas Noinaj, 2021. "Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    10. Diana A. Llerena Schiffmacher & Shun-Hsiao Lee & Katarzyna W. Kliza & Arjan F. Theil & Masaki Akita & Angela Helfricht & Karel Bezstarosti & Camila Gonzalo-Hansen & Haico Attikum & Matty Verlaan-de Vr, 2024. "The small CRL4CSA ubiquitin ligase component DDA1 regulates transcription-coupled repair dynamics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Yongchang Zhu & Xiping Zhang & Meng Gao & Yanchao Huang & Yuanqing Tan & Avital Parnas & Sizhong Wu & Delin Zhan & Sheera Adar & Jinchuan Hu, 2024. "Coordination of transcription-coupled repair and repair-independent release of lesion-stalled RNA polymerase II," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Jina Yu & Chunli Yan & Thomas Dodd & Chi-Lin Tsai & John A. Tainer & Susan E. Tsutakawa & Ivaylo Ivanov, 2023. "Dynamic conformational switching underlies TFIIH function in transcription and DNA repair and impacts genetic diseases," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Weize Wang & Ling Liang & Zonglin Dai & Peng Zuo & Shang Yu & Yishuo Lu & Dian Ding & Hongyi Chen & Hui Shan & Yan Jin & Youdong Mao & Yuxin Yin, 2024. "A conserved N-terminal motif of CUL3 contributes to assembly and E3 ligase activity of CRL3KLHL22," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Christopher Jonkergouw & Ngong Kodiah Beyeh & Ekaterina Osmekhina & Katarzyna Leskinen & S. Maryamdokht Taimoory & Dmitrii Fedorov & Eduardo Anaya-Plaza & Mauri A. Kostiainen & John F. Trant & Robin H, 2023. "Repurposing host-guest chemistry to sequester virulence and eradicate biofilms in multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Parthasarathi Rath & Adrian Hermann & Ramona Schaefer & Elia Agustoni & Jean-Marie Vonach & Martin Siegrist & Christian Miscenic & Andreas Tschumi & Doris Roth & Christoph Bieniossek & Sebastian Hille, 2023. "High-throughput screening of BAM inhibitors in native membrane environment," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Josh L Espinoza & Chris L Dupont & Aubrie O’Rourke & Sinem Beyhan & Pavel Morales & Amy Spoering & Kirsten J Meyer & Agnes P Chan & Yongwook Choi & William C Nierman & Kim Lewis & Karen E Nelson, 2021. "Predicting antimicrobial mechanism-of-action from transcriptomes: A generalizable explainable artificial intelligence approach," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-25, March.
    17. Yunmin Yang & Binbin Chu & Jiayi Cheng & Jiali Tang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Philipp Walch & Petr Broz, 2024. "Viral-bacterial co-infections screen in vitro reveals molecular processes affecting pathogen proliferation and host cell viability," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Lu Wu & Xu-Wen Wang & Zining Tao & Tong Wang & Wenlong Zuo & Yu Zeng & Yang-Yu Liu & Lei Dai, 2024. "Data-driven prediction of colonization outcomes for complex microbial communities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Éva d. H. Almási & Lea Eisenhard & Lisa Osbelt & Till Robin Lesker & Anna C. Vetter & Nele Knischewski & Agata Anna Bielecka & Achim Gronow & Uthayakumar Muthukumarasamy & Marie Wende & Caroline Tawk , 2025. "Klebsiella oxytoca facilitates microbiome recovery via antibiotic degradation and restores colonization resistance in a diet-dependent manner," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58282-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.