IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11230-9.html
   My bibliography  Save this article

Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel

Author

Listed:
  • Matthew T. Doyle

    (National Institutes of Health)

  • Harris D. Bernstein

    (National Institutes of Health)

Abstract

The integration of β-barrel proteins into the bacterial outer membrane (OM) is catalysed by the β-barrel assembly machinery (BAM). The central BAM subunit (BamA) itself contains a β-barrel domain that is essential for OM protein biogenesis, but its mechanism of action is unknown. To elucidate its function, here we develop a method to trap a native Escherichia coli β-barrel protein bound stably to BamA at a late stage of assembly in vivo. Using disulfide-bond crosslinking, we find that the first β-strand of a laterally ‘open’ form of the BamA β-barrel forms a rigid interface with the C-terminal β-strand of the substrate. In contrast, the lipid-facing surface of the last two BamA β-strands forms weaker, conformationally heterogeneous interactions with the first β-strand of the substrate that likely represent intermediate assembly states. Based on our results, we propose that BamA promotes the membrane integration of partially folded β-barrels by a ‘swing’ mechanism.

Suggested Citation

  • Matthew T. Doyle & Harris D. Bernstein, 2019. "Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11230-9
    DOI: 10.1038/s41467-019-11230-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11230-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11230-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Runrun Wu & Jeremy W. Bakelar & Karl Lundquist & Zijian Zhang & Katie M. Kuo & David Ryoo & Yui Tik Pang & Chen Sun & Tommi White & Thomas Klose & Wen Jiang & James C. Gumbart & Nicholas Noinaj, 2021. "Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM," Nature Communications, Nature, vol. 12(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11230-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.